Derivation of Backpropagation in Convolutional Neural Network (CNN)

Zhifei Zhang

University of Tennessee, Knoxvill, TN

October 18, 2016

Abstract— Derivation of backpropagation in convolutional neural network (CNN) is conducted based on an example with two convolutional layers. The step-by-step derivation is helpful for beginners. First, the feedforward procedure is claimed, and then the backpropagation is derived based on the example.

1 Feedforward

Figure 1: The structure of CNN example that will be discussed in this paper. It is exactly the same to the structure used in the demo of Matlab DeepLearnToolbox [1]. All later derivation will use the same notations in this figure.

1.1 Initialization of Parameters

The parameters are:

- C1 layer, $k_{1,p}^1$ (size 5 × 5) and b_p^1 (size 1 × 1), $p = 1, 2, \dots 6$
- C2 layer, $k_{p,q}^2$ (size 5×5) and b_q^2 (size 1×1), $q = 1, 2, \dots 12$
- FC layer, W (size 10×192) and b (size 10×1)

All bias, b_p^1 , b_q^2 , and b, are initialize to zero. The others are drew randomly from a uniform distribution defined based on the kernel size and number of input and output maps on corresponding layers [2] (see section 4.6 of [2]).

$$k_{1,p}^1 \sim U\left(\pm\sqrt{\frac{6}{(1+6)\times 5^2}}\right)$$
 (1)

$$k_{p,q}^2 \sim U\left(\pm\sqrt{\frac{6}{(6+12)\times 5^2}}\right)$$
 (2)

$$W \sim U\left(\pm\sqrt{\frac{6}{192+10}}\right) \tag{3}$$

where $U(\pm x)$ denotes a uniform distribution with upper and lower bounds of $\pm x$. Totally, the number of parameters is $(5 \times 5 + 1) \times 6 + (5 \times 5 \times 6 + 1) \times 12 + 10 \times 192 + 10 = 3898$.

1.2 Convolution Layer C1

$$C_p^1 = \sigma(I * k_{1,p}^1 + b_p^1), \text{ where } \sigma(x) = \frac{1}{1 + \exp^{-x}}$$
(4)

$$C_p^1(i,j) = \sigma \left(\sum_{u=-2}^2 \sum_{v=-2}^2 I(i-u,j-v) \cdot k_{1,p}^1(u,v) + b_p^1 \right)$$
(5)

where $p = 1, 2, \dots, 6$ because there are 6 feature maps on C1 layer, * denotes the convolution, and *i*, *j* are row and column indices of the feature map. Only keeping those parts of the convolution that are computed without the zero-padded edges, the size of C_p^1 is 24×24 , rather than 28×28 like *I*.

1.3 Pooling Layer S1

$$S_p^1(i,j) = \frac{1}{4} \sum_{u=0}^{1} \sum_{v=0}^{1} C_p^1(2i-u,2j-v), \ i,j=1,2,\cdots,12$$
(6)

1.4 Convolution Layer C2

$$C_q^2 = \sigma \left(\sum_{p=1}^6 S_p^1 * k_{p,q}^2 + b_q^2 \right)$$
(7)

$$C_q^2(i,j) = \sigma \left(\sum_{p=1}^6 \sum_{u=-2}^2 \sum_{v=-2}^2 S_p^1(i-u,j-v) \cdot k_{p,q}^2(u,v) + b_q^2 \right)$$
(8)

where $q = 1, 2, \dots, 12$ because there are 12 feature maps on C2 layer. Only keeping those parts of the convolution that are computed without the zero-padded edges, the size of C_q^2 is 8×8 , rather than 12×12 like S_p^1 .

1.5 Pooling Layer S2

$$S_q^2(i,j) = \frac{1}{4} \sum_{u=0}^{1} \sum_{v=0}^{1} C_q^2 (2i - u, 2j - v), \ i, j = 1, 2, \cdots, 4$$
(9)

1.6 Vectorization and Concatenation

Each S_q^2 is a 4×4 matrix, and there are 12 such matrices on the S2 layer. First, each S_q^2 is vectorized by column scan, then all 12 vectors are concatenated to form a long vector with the length of $4 \times 4 \times 12 = 192$. We denote this process by

$$f = F\left(\{S_q^2\}_{q=1,2,\cdots,12}\right),\tag{10}$$

and the reverse process is

$$\{S_q^2\}_{q=1,2,\cdots,12} = F^{-1}(f).$$
(11)

1.7 Fully Connection Layer FC

$$\hat{y} = \sigma(W \times f + b) \tag{12}$$

1.8 Loss Function

Assuming the true label is y, the loss function is express by

$$L = \frac{1}{2} \sum_{i=1}^{10} \left(\hat{y}(i) - y(i) \right)^2 \tag{13}$$

2 Backpropagation

In the backpropagation, we'll update the parameters from the back to start, namely W and b, $k_{p,q}^2$ and b_q^2 , $k_{1,p}^1$ and b_p^1 .

2.1 ΔW (size 10 × 192)

$$\Delta W(i,j) = \frac{\partial L}{\partial W(i,j)} \tag{14}$$

$$=\frac{\partial L}{\partial \hat{y}(i)} \cdot \frac{\partial \hat{y}(i)}{\partial W(i,j)}$$
(15)

$$= (\hat{y}(i) - y(i)) \cdot \frac{\partial}{\partial W(i,j)} \sigma \left(\sum_{j=1}^{192} W(i,j) \times f(j) + b(i) \right)$$
(16)

$$= (\hat{y}(i) - y(i)) \cdot \hat{y}(i)(1 - \hat{y}(i)) \cdot f(j)$$
(17)

Let $\Delta \hat{y}(i) = (\hat{y}(i) - y(i)) \cdot \hat{y}(i)(1 - \hat{y}(i))$, whose size is 10×1 , then

$$\Delta W(i,j) = \Delta \hat{y}(i) \cdot f(j) \tag{18}$$

$$\Longrightarrow \Delta W = \Delta \hat{y} \times f^T \tag{19}$$

2.2 Δb (size 10×1)

$$\Delta b(i) = \frac{\partial L}{\partial b(i)} \tag{20}$$

$$=\frac{\partial L}{\partial \hat{y}(i)} \cdot \frac{\partial \hat{y}(i)}{\partial b(i)} \tag{21}$$

$$= (\hat{y}(i) - y(i)) \cdot \frac{\partial}{\partial b(i)} \sigma \left(\sum_{j=1}^{192} W(i,j) \times f(j) + b(i) \right)$$
(22)

$$= (\hat{y}(i) - y(i)) \cdot \hat{y}(i)(1 - \hat{y}(i))$$
(23)

$$\Longrightarrow \Delta b = \Delta \hat{y} \tag{24}$$

2.3 $\Delta k_{p,q}^2$ (size 5 × 5)

Because of concatenation, vectorization, and pooling, we need to compute the back-propagation error ΔC_q^2 on C2 layer before calculating $\Delta k_{p,q}^2$.

$$\Delta f(j) = \frac{\partial L}{\partial f} \tag{25}$$

$$=\sum_{i=1}^{10} \frac{\partial L}{\partial \hat{y}(i)} \cdot \frac{\partial \hat{y}(i)}{\partial f(j)}$$
(26)

$$= (\hat{y}(i) - y(i)) \cdot \frac{\partial}{\partial f(j)} \sigma \left(\sum_{j=1}^{192} W(i,j) \times f(j) + b(i) \right)$$
(27)

$$=\sum_{i=1}^{10} (\hat{y}(i) - y(i)) \cdot \hat{y}(i)(1 - \hat{y}(i)) \cdot W(i, j)$$
(28)

$$=\sum_{i=1}^{10}\Delta\hat{y}(i)\cdot W(i,j)$$
(29)

$$\Longrightarrow \Delta f = W^T \times \Delta \hat{y} \tag{30}$$

From section 1.6, we reshape the long error vector Δf (size 192×1) by

$$\{\Delta S_q^2\}_{q=1,2,\cdots,12} = F^{-1}(\Delta f), \tag{31}$$

which gets the error on S2 layer (twelve 4×4 error maps). Because there is no parameters on S2 layer, we do not need to do any derivative stuff. Then, upsampling is performed to obtain the error on C2 layer.

$$\Delta C_q^2(i,j) = \frac{1}{4} \Delta S_q^2\left(\lceil i/2 \rceil, \lceil j/2 \rceil\right), \ i,j = 1, 2, \cdots, 8$$

$$(32)$$

where $\lceil \cdot \rceil$ denotes the ceiling function. Note that the size of ΔS_q^2 and ΔC_q^2 are 4×4 and 8×8 , respectively. Now, we are ready to derive $\Delta k_{p,q}^2$.

$$\Delta k_{p,q}^2(u,v) = \frac{\partial L}{\partial k_{p,q}^2(u,v)}$$
(33)

$$=\sum_{i=1}^{8}\sum_{j=1}^{8}\frac{\partial L}{\partial C_q^2(i,j)}\cdot\frac{\partial C_q^2(i,j)}{\partial k_{p,q}^2(u,v)}$$
(34)

$$=\sum_{i=1}^{8}\sum_{j=1}^{8}\Delta C_{q}^{2}(i,j)\cdot\frac{\partial}{\partial k_{p,q}^{2}(u,v)}\sigma\left(\sum_{p=1}^{6}\sum_{u=-2}^{2}\sum_{v=-2}^{2}S_{p}^{1}(i-u,j-v)\cdot k_{p,q}^{2}(u,v)+b_{q}^{2}\right)$$
(35)

$$=\sum_{i=1}^{8}\sum_{j=1}^{8}\Delta C_{q}^{2}(i,j)\cdot C_{q}^{2}(i,j)\left(1-C_{q}^{2}(i,j)\right)\cdot S_{p}^{1}(i-u,j-v)$$
(36)

Let

$$\Delta C_{q,\sigma}^{2}(i,j) = \Delta C_{q}^{2}(i,j) \cdot C_{q}^{2}(i,j) \left(1 - C_{q}^{2}(i,j)\right),$$
(37)

which is actually the error before sigmoid function on C2 layer. Therefore,

$$C_{q,\sigma}^{2}(i,j) = \sum_{p=1}^{6} \sum_{u=-2}^{2} \sum_{v=-2}^{2} S_{p}^{1}(i-u,j-v) \cdot k_{p,q}^{2}(u,v) + b_{q}^{2}$$
(38)

Rotating S_p^1 180 degrees, we get $S_{p,rot180}^1$, thus $S_{p,rot180}^1(u-i, v-j) = S_p^1(i-u, j-v)$. Therefore, $\Delta k_{p,q}^2$ can be expressed by

$$\Delta k_{p,q}^2(u,v) = \sum_{i=1}^8 \sum_{j=1}^8 S_{p,rot180}^1(u-i,v-j) \cdot \Delta C_{q,\sigma}^2(i,j)$$
(39)

$$\Longrightarrow \Delta k_{p,q}^2 = S_{p,rot180}^1 * \Delta C_{q,\sigma}^2 \tag{40}$$

2.4 Δb_q^2 (size 1×1)

$$\Delta b_q^2 = \frac{\partial L}{\partial b_q^2} \tag{41}$$

$$=\sum_{i=1}^{8}\sum_{j=1}^{8}\frac{\partial L}{\partial C_q^2(i,j)}\cdot\frac{\partial C_q^2(i,j)}{\partial b_q^2}$$
(42)

$$=\sum_{i=1}^{8}\sum_{j=1}^{8}\Delta C_{q}^{2}(i,j)\cdot\frac{\partial}{\partial b_{q}^{2}}\sigma\left(\sum_{p=1}^{6}\sum_{u=-2}^{2}\sum_{v=-2}^{2}S_{p}^{1}(i-u,j-v)\cdot k_{p,q}^{2}(u,v)+b_{q}^{2}\right)$$
(43)

$$=\sum_{i=1}^{8}\sum_{j=1}^{8}\Delta C_{q}^{2}(i,j)\cdot C_{q}^{2}(i,j)\left(1-C_{q}^{2}(i,j)\right)$$
(44)

$$=\sum_{i=1}^{8}\sum_{j=1}^{8}\Delta C_{q,\sigma}^{2}(i,j)$$
(45)

2.5 $\Delta k_{1,p}^1$ (size 5 × 5)

Similar to the derivation of $\Delta k_{p,q}^2$, we should first obtain ΔS_p^1 , the error on S1 layer. Then, upsampling will be performed to get ΔC_p^1 , the error on C1 layer. Finally, following the same

way, we can calculate $\Delta k_{1,p}^1$.

$$\Delta S_p^1(i,j) = \frac{\partial L}{\partial S_p^1(i,j)} \tag{46}$$

$$=\sum_{q=1}^{12}\sum_{u=-2}^{2}\sum_{v=-2}^{2}\frac{\partial L}{\partial C_{q,\sigma}^{2}(i+u,j+v)}\cdot\frac{\partial C_{q,\sigma}^{2}(i+u,j+v)}{\partial S_{p}^{1}(i,j)}$$
(47)

$$=\sum_{q=1}^{12}\sum_{u=-2}^{2}\sum_{v=-2}^{2}\Delta C_{q,\sigma}^{2}(i+u,j+v)\cdot\frac{\partial}{\partial S_{p}^{1}(i,j)}\left(\sum_{p=1}^{6}\sum_{u=-2}^{2}\sum_{v=-2}^{2}S_{p}^{1}(i,j)\cdot k_{p,q}^{2}(u,v)+b_{q}^{2}\right)$$
(48)

$$=\sum_{q=1}^{12}\sum_{u=-2}^{2}\sum_{v=-2}^{2}\Delta C_{q,\sigma}^{2}(i+u,j+v)\cdot k_{p,q}^{2}(u,v)$$
(49)

Rotating $k_{p,q}^2$ 180 degrees, we get $k_{p,q,rot180}^2(-u,-v) = k_{p,q}^2(u,v)$. Therefore,

$$\Delta S_p^1(i,j) = \sum_{q=1}^{12} \sum_{u=-2}^{2} \sum_{v=-2}^{2} \Delta C_{q,\sigma}^2(i-(-u),j-(-v)) \cdot k_{p,q,rot180}^2(-u,-v)$$
(50)

$$\Longrightarrow \Delta S_p^1 = \sum_{q=1}^{12} \Delta C_{q,\sigma}^2 * k_{p,q,rot180}^2 \tag{51}$$

By upsampling, we get the error on C1 layer,

$$\Delta C_p^1(i,j) = \frac{1}{4} \Delta S_p^1(\lceil i/2 \rceil, \lceil j/2 \rceil), \ i,j = 1, 2, \cdots, 24$$
(52)

Now, we are ready to calculate $\Delta k_{1,p}^1,$

$$\Delta k_{1,p}^1(u,v) = \frac{\partial L}{\partial k_{1,p}^1(u,v)}$$
(53)

$$=\sum_{i=1}^{24}\sum_{j=1}^{24}\frac{\partial L}{\partial C_{p}^{1}(i,j)}\cdot\frac{\partial C_{p}^{1}(i,j)}{\partial k_{1,p}^{1}(u,v)}$$
(54)

$$=\sum_{i=1}^{24}\sum_{j=1}^{24}\Delta C_p^1(i,j)\cdot\frac{\partial}{\partial k_{1,p}^1(u,v)}\sigma\left(\sum_{u=-2}^2\sum_{v=-2}^2I(i-u,j-v)\cdot k_{1,p}^1(u,v)+b_p^1\right)$$
(55)

$$=\sum_{i=1}^{24}\sum_{j=1}^{24}\Delta C_p^1(i,j) \cdot C_p^1(i,j) \left(1 - C_p^1(i,j)\right) \cdot I(i-u,j-v)$$
(56)

By the same token, rotate I 180 degrees, and let

$$\Delta C_{p,\sigma}^{1}(i,j) = \Delta C_{p}^{1}(i,j) \cdot C_{p}^{1}(i,j) \left(1 - C_{p}^{1}(i,j)\right).$$
(57)

Finally,

$$\Delta k_{1,p}^1(u,v) = \sum_{i=1}^{24} \sum_{j=1}^{24} I_{rot180}(u-i,v-j) \cdot \Delta C_{p,\sigma}^1(i,j)$$
(58)

$$\Longrightarrow \Delta k_{1,p}^1 = I_{rot180} * \Delta C_{p,\sigma}^1 \tag{59}$$

$$\Delta b_p^1 = \frac{\partial L}{\partial b_p^1} \tag{60}$$

$$=\sum_{i=1}^{24}\sum_{j=1}^{24}\frac{\partial L}{\partial C_p^1(i,j)}\cdot\frac{\partial C_p^1(i,j)}{\partial b_p^1}$$
(61)

$$=\sum_{i=1}^{24}\sum_{j=1}^{24}\Delta C_{p}^{1}(i,j)\cdot\frac{\partial}{\partial b_{p}^{1}}\sigma\left(\sum_{u=-2}^{2}\sum_{v=-2}^{2}I(i-u,j-v)\cdot k_{1,p}^{1}(u,v)+b_{p}^{1}\right)$$
(62)

$$=\sum_{i=1}^{24}\sum_{j=1}^{24}\Delta C_p^1(i,j) \cdot C_p^1(i,j) \left(1 - C_p^1(i,j)\right)$$
(63)

$$=\sum_{i=1}^{24}\sum_{j=1}^{24}\Delta C_{p,\sigma}^{1}(i,j)$$
(64)

3 Parameter Update

We need to set a learning rate $\alpha \in (0, 1]$.

$$k_{1,p}^{1} \leftarrow k_{1,p}^{1} - \alpha \cdot \Delta k_{1,p}^{1} \tag{65}$$

$$b_p^1 \leftarrow b_p^1 - \alpha \cdot \Delta b_p^1 \tag{66}$$

$$k_{p,q}^2 \leftarrow k_{p,q}^2 - \alpha \cdot \Delta k_{p,q}^2 \tag{67}$$

$$b_q^2 \leftarrow b_q^2 - \alpha \cdot \Delta b_q^2 \tag{68}$$

$$W \leftarrow W - \alpha \cdot \Delta W \tag{69}$$

$$b \leftarrow b - \alpha \cdot \Delta b \tag{70}$$

References

- [1] Palm, Rasmus Berg. "Prediction as a candidate for learning deep hierarchical models of data." *Technical University of Denmark* 5 (2012).
- [2] LeCun, Yann A., Leon Bottou, Genevieve B. Orr, and Klaus-Robert MÃijller. "Efficient backprop." In *Neural networks: Tricks of the trade*, pp. 9-48. Springer Berlin Heidelberg, 2012.