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Motivation:
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The conditional adversarial networks applied in existing works mainly consists of two parts:
1) the encoding-decoding nets (ED)

2) the GANSs, which are tied in the parts of decoder and generator.

Therefore, the reconstruction loss and adversarial loss interact/compete with each other,
potentially causing unstable results as shown above.

Existing works have to introduce a weighting factor (e.g., the values in the figure) to balance
the effect of the two losses. How to adaptively set an appropriate weight or completely
remove the necessity of the weighting factor is a problem unexplored.



Main ldea:

Decouple the interaction between the reconstruction loss and adversarial loss in
backpropagation, avoiding the competition that may cause instability.
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« ED+GAN: the traditional structure

« ED//GAN: the proposed structure(decoupled learning)
« Enc and Dec: the encoder and decoder networks

« G and D: the generator and discriminator

« Black arrows: feedforward path

 Red arrows: backpropagation of reconstruction loss

- Blue arrows: backpropagation of adversarial loss



Approach:
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The objective function:

min Leonst(Enc, Dec) + mci;nﬁadv(G) + rrgnﬁadv (D).
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There are no weighting parameters between the losses in the objective function,
which relaxes the manual tuning.



Normalized Relative Discriminative Score (NRDS):
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Experimental Results:
Compare ED+GAN and ED//GAN:

Table 2. NRDS with different weight settings and their std.

0.001 | 0.01 0.1 1 std
ED+GAN | .1172 | .1143 | .1163 | .0731 | .0215
ED+GAN2 | .1066 | .1143 | .1268 | .1267 | .0099
ED//GAN | .1432 | .1434 | .1458 | .1466 | .0017

ED+GAN?2 denote the structure with batch normalization

ED+GAN is sensitive to weight

variation. By contrast, ED//GAN is

robust to weight variation, relaxing
the weight tuning.



Experimental Results:

Adapt Pix2Pix [Isola et al.,

Pix2Pix (ED+GAN)
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Experimental Results
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Adapt CAAE [Zhang et al., 2017] to ED//GAN:
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Conclusion:

We relax the weight tuning in conditional
adversarial nets by decouple the back prorogation

from the reconstruction loss and adversarial loss,
achieving more stable results.
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