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Abstract
We start by asking an interesting yet challenging
question, “If a large proportion (e.g., more than
90%) of the face/sketch is missing, can a realis-
tic whole face sketch/image still be estimated?”
Existing face completion and generation meth-
ods either do not conduct multi-domain transfer
or cannot handle large missing area. For exam-
ple, the inpainting approach tends to blur the gen-
erated region when the missing area is large (i.e.,
more than 50%). In this paper, we exploit the po-
tential of deep learning networks in filling large
missing region (e.g., as high as 95% missing)
and generating realistic faces in cross domains
by given patches with very limited information.
We propose the recursive generation by bidi-
rectional transformation networks (r-BTN) that
recursively generates a whole face/sketch from
small sketch/face patches. The large missing area
and the cross domain challenge make it difficult
to generate satisfactory results using a unidirec-
tional cross-domain learning structure. On the
other hand, a forward and backward bidirectional
learning between the face and sketch domains
would enable recursive estimation of the miss-
ing region in an incremental manner (Fig. 1) and
yield appealing results. Extensive experiments
have been conducted to demonstrate the superior
performance from r-BTN as compared to exist-
ing potential solutions.

1. Introduction
A common scenario in law enforcement is that sketches of
suspects are drawn by forensic artists or created by com-
puter software (i.e., facial composite) based on descriptions
provided by eyewitnesses or victims (Klum et al., 2013).
However, the forgetting process (Ouyang et al., 2016) may
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Figure 1. Examples of recursive generation from small face or
sketch patches by the bidirectional transformation network. Left:
Original face/sketch and the corresponding input patches ex-
tracted from them. Inside of the dashed box demonstrates the gen-
erated face/sketch at different iteration steps. Right: Illustration
of transformation between the face and sketch manifolds I and S,
respectively. The green dot denotes a given face patch. The red
and blue arrows are the learned mapping f and F , respectively.
The red and blue dots are generated sketches and faces through
corresponding mapping.

cause the eyewitness to have strong impression only on
some key part of the face. In these cases, the whole face
sketch will have to be created (i.e., imagined) by the foren-
sic artist. In addition, some facial composite methods (e.g.,
Photofit (Photofit)) synthesize faces by stitching patches
from multiple domains which deteriorates the consistency
and photo-reality. How to generate realistic faces/sketches
that are consistent to the given sketch/face patches is still
a challenging task because large missing area could lead
to blurry generated images, and cross-domain filling could
further deteriorate the quality of generated faces, especially
when transferring from information-scarce to information-
rich domains (e.g., from sketch to face). To the best of our
knowledge, this work represents the first attempt to cross-
filling large missing area in both face and sketch domains,
and compositing realistic faces conditioned on small facial
parts from multiple domains and/or subjects (See Fig. 5).
Existing works that may potentially address this prob-
lem are mainly in the perspectives of face/sketch synthe-
sis/transformation and image inpainting. The face/sketch
synthesis works (Wang & Tang, 2009; Tang & Wang, 2003;
Zhou et al., 2012; Song et al., 2014) synthesize target faces
from the source domain through patch-wise searching of
similar patches in the training set. Without the generative
capability, these methods fail to render reasonable pixels
for large missing areas. The generative adversarial net-
works (GANs) (Goodfellow et al., 2014) has shown im-
pressive performance in face generation (Radford et al.,
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2015; Zhang et al., 2017), domain transformation (Zhu
et al., 2016; Isola et al., 2016), and inpainting (Yeh et al.,
2016; Pathak et al., 2016). However, generating faces from
small patches in either single or cross domains has not been
explored.

In this paper, we investigate the problem of cross-domain
face/sketch composition/generation conditioned on small
patches of sketch/face. We assume that faces and sketches
lie on high-dimensional manifolds I and S , respectively, as
shown in Fig. 1 (right). The given small sketch/face patch
will initially deviate from the corresponding manifold due
to large amount of missing data. With the learned bidi-
rectional transformation network (BTN), i.e., f and F , the
given patch will be recursively mapped forward and back-
ward between I and S. Each mapping will yield a result
progressively closing in onto either the face or sketch mani-
fold, and eventually approaching the real whole face/sketch
images as shown in Fig. 1 (left). An adversarial network
is imposed on both f and F , forcing more photo-realistic
faces/sketches. The rationale and benefit of the proposed
r-BTN will be further discussed in section 2.

This paper makes the following contributions: 1) We tackle
the challenging problem of face/sketch generation from
small patches, estimating large missing area based on lim-
ited information while alleviating the blur effect suffered
by existing works. 2) We propose the recursive gener-
ation by bidirectional transformation networks (r-BTN),
which learns both a forward and backward mapping func-
tion between cross domains to enable a recursive update of
the generated faces/sketches for more consistent and high-
fidelity results even with large portions of missing data. 3)
We further exploit the capacity of r-BTN in fusing multi-
ple patches from multiple domains and multiple people to
output a realistic and consistent face in a generative man-
ner. 4) In the area of generative imaging, there is a lack
of quantitative evaluation of image reality. We design rela-
tive discrimination score (RDS) for effective evaluation of
image reality.

2. The Recursive Bidirectional
Transformation Network

Training Stage: Fig. 2 illustrates the BTN structure where
the mapping functions, f and F , are learned in a bidirec-
tional fashion.

Given the original face/sketch pair xI and xS , the follow-
ing transformations are performed,

x0
S = f(xI), x1

I = F (x0
S) = F (f(xI)),

x0
I = F (xS), x1

S = f(x0
I) = f(F (xS)).

The objective is to learn the bidirectional transformations
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Figure 2. Training flow of the bidirectional transformation net-
work. xI and xS are the real face/sketch pair. Red and blue ar-
rows denote the transformation paths of xI and xS , respectively.
The transformation functions f and F could be encoder-decoder
networks. Loss denotes the `1-norm. The discriminator D is
trained on real and generated (fake) face/sketch pairs.

between I and S, so that any face/sketch pair could be
uniquely mapped forward and backward into another do-
main. Note that in training stage, all pairs are whole face in-
stead of patches. To preserve the identity of face and sketch
during transformations, we minimize the reconstruction er-
ror Lrec between real and generated faces or sketches as
Eq. 1.

Lrec =

1∑
i=0

(
‖xI − xiI‖1 + ‖xS − xiS‖1

)
, (1)

where the `1-norm instead of the `2-norm is used to avoid
blurry results. Besides Lrec, an adversarial constraint is
employed to encourage photo-realistic face/sketch pairs.
The discrimination loss can be written as

Ladv = Eω∈Ω [logD(ω)]− ExI∈I
xS∈S

[logD(xI , xS)], (2)

where

Ω =
{

(xI , x
0
S)j , (x

1
I , x

0
S)j , (x

0
I , xS)j , (x

0
I , x

1
S)j
}

= {(xI , f(xI))j , (F (f(xI), f(xI)))j ,

(F (xS), xS)j , (F (xS), f(F (xS)))j}

indicates the fake face/sketch pairs, and j indexes the fake
pairs generated from the jth real pair in a mini-batch. Note
that only (xI , xS) is the real pair. Combining Eqs. 1 and 2,
the objective function is

min
f,F,D

Ladv + λLrec, (3)

where λ balances the adversarial loss and reconstruction
loss. In optimization, f , F , and D are updated alter-
natively. The discriminator D is updated by minimizing
Ladv . The update of f and F is performed by

min
f

Eω∈Ωf
[logD(ω)] + λ

1∑
i=0

‖xS − xiS‖1, (4)

min
F

Eω∈ΩF
[logD(ω)] + λ

1∑
i=0

‖xI − xiI‖1, (5)
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where

Ωf =
{

(xI , x
0
S)j , (x

0
I , x

1
S)j
}

=
{

(xI , f(xI))j , (x
0
I , f(x0

I))j
}
,

ΩF =
{

(x0
I , xS)j , (x

1
I , x

0
S)j
}

=
{

(F (xS), xS)j , (F (x0
S), x0

S)j
}
,

and Ω = Ωf ∪ ΩF . Here, j is again the index of training
samples in a mini-batch.

Testing Stage: During testing, given an arbitrary patch
from either domain, a whole face from the other domain
could be generated in a “recursive” manner through the
bidirectional transformation. The testing flow is shown in
Fig. 3, which demonstrates the case of given a face patch
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Figure 3. Testing flow of r-BTN, assuming a face patch pI as the
input. At step k, the generated face is xk

I . Replacing the corre-
sponding area of xk

I by the patch pI and transforming xk
I to xk

S ,
we get a face/sketch pair

(
xk
I , x

k
S
)
. Then, this pair is adjusted by

the error back propagated from D as comparing to the output of
real pairs. Finally, xk

S is transformed back to the face domain,
generating xk+1

I for the next iteration.

pI . Similarly, if a sketch patch pS is given, it will be fed
to xS and similar testing flow can be carried out to gen-
erate a whole face image. Given a small patch, the test-
ing stage needs multiple iterations to gradually generate a
whole face/sketch with the fixed given patch, as illustrated
previously in Fig. 1. In each iteration, backpropagating the
loss of D will enforce the photo-reality during the recur-
sive generation. Repeating this procedure, the large miss-
ing area can be filled up gradually which is consistent with
the given patch.

3. Experiment and Results
3.1. Implementation Details

We collect face/sketch pairs from the datasets
CUHK (Wang & Tang, 2009), CUFSF (Zhang et al., 2011),
AR (Martinez & Benavente, 2007), FERET (Phillips et al.,
2000), and IIIT-D (Bhatt et al., 2012). All the face/sketch
images are cropped and well-aligned based on the eye
locations, and preprocessed to be uniform white back-
ground. The transformations f and F are implemented
by the Conv-Deconv network. Details are shown in
supplementary materials. After 100 epochs, we could
achieve the results as shown in this paper.

3.2. Qualitative Evaluation

Comparison with Other Methods We compare the pro-
posed r-BTN with Pix2Pix (Isola et al., 2016) and image in-
painting (Pathak et al., 2016). The inpainting method com-
pared in this paper is modified from (Pathak et al., 2016)
to achieve cross-domain inpainting. Specifically, the inputs
are faces/sketches with random mask (20%∼80% masked),
and the outputs are the whole sketch/face. Pix2Pix and
r-BTN are trained with the whole face/sketch pairs. All
methods are trained on the same training dataset with
the same parameter setting. The comparison results are
shown in Fig. 4. The Pix2Pix and inpainting methods train
face-sketch and sketch-face transformation networks inde-
pendently, which is why the identity between generated
sketches and faces cannot be preserved. For example, com-
paring the two rows labeled with “inpainting”, especially
the 4th-6th columns, the sketches seem female while the
faces appear like male. In addition, the inpainting results
present apparent discontinuity between the given patch and
the estimated area. On the other hand, the results from
r-BTN demonstrate higher fidelity, better consistency to
given patches, and better identity preservation. Note that
the main objective of this work is to generate more photo-
realistic and consistent face/sketch images. The identity of
the person can be preserved when the missing percentage
is less than 70%. When the missing percentage is higher,
the algorithm still generates photo-realistic results but the
identity is not preserved. More results can be found in the
supplementary materials.

Generation from Multiple Patches We explore the r-BTN
to generate consistent and realistic faces from multiple
patches that may be from two domains and multiple peo-
ple. Examples generated from multiple patches are shown
in Fig. 5, demonstrating the great versatility of r-BTN. We
again observe the strong consistency and fidelity between
the generated face/sketch pairs.

3.3. Quantitative Evaluation

To numerically evaluate the quality of generated faces, we
design the relative discrimination score (RDS), which aims
to estimate the photo-reality of generated faces. We train
a discriminator to distinguish between real and generated
faces. With more epochs, the discriminator output from
real faces would be close to one, and that from generated
faces should approach zero. If the generated faces are real-
istic, their discriminator output would be relatively higher
and decrease slower with epochs as compared to that of
unrealistic faces. Fig. 6 shows the discriminator output of
each method during training the discriminator.

RDS computes the ratio of area under the curves of gen-
erated faces from certain method and real faces. Higher
RDS indicates more photo-realistic faces. During train-
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Figure 4. Comparison with other potential methods for filling large missing areas. The first row shows the input patches, and the rest
rows display the results from different methods. The percentage indicates missing proportion (missing area over image area). Because
Pix2Pix is for domain transfer rather than missing area filling, its results cannot compete with inpainting or r-BTN. We show them here
to provide the baseline of domain transfer methods in filling large missing areas.

Figure 5. Examples of generated faces/sketches from multiple
patches, which are from different people and/or different domains.
Four examples are displayed in a 2-by-2 matrix. In each cell, the
original faces and sketches are given on the left. The patches are
extracted from where indicated by the arrows. The right are gen-
erated face/sketch pairs.

ing the discriminator, 900 real faces are randomly selected
from the training set, and 300 faces are generated from each
method. Thus, we have balanced real and generated sam-
ples. The area under a curve is computed by trapezoidal
numerical integration. We observe that the RDS level of r-
BTN is much higher than that of inpainting, showing more
photo-realistic outputs generated from r-BTN.
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Figure 6. Averaged discriminator output at each mini-batch (30
samples) during training the discriminator that aims to distinguish
real and generated faces from Pix2Pix, inpainting, and r-BTN, re-
spectively. Left and middle are the averaged discriminator outputs
by given random patches with 10% (left) and 95% (middle) miss-
ing. Right is the RDS with different missing percentage.

4. Discussion and Future works
This paper proposed and solved the challenging task of
cross-domain face generation with large missing area. A
novel recursive generation method by bidirectional trans-
formation networks (r-BTN) was proposed to generate
high-fidelity and consistent face/sketch even with missing
area as large as 95%. The consistency is achieved by the
bidirectional network while the idea of “recursive” gener-
ation demonstrated the potential capability on high-quality
image generation. We also demonstrated the effectiveness
of r-BTN by comparing with some potential solutions like
pix2pix and inpainting. In the future, we plan to improve
r-BTN to be more robust to faces/sketch misalignment.
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Appendix
Network Structure

All the face/sketch images are cropped and well-aligned
based on the eye locations, and preprocessed to be uniform
white background. The transformations f and F are imple-
mented by the Conv-Deconv network as shown in Table 1.

Table 1. Network structure used for transformation
Conv. (LeakyReLU) Deconv. (ReLU)

2562 × 3, 1282 × 64, 22 × 1024, 42 × 1024,
642 × 128, 322 × 256, 82 × 1024, 162 × 512,
162 × 512, 82 × 1024, 322 × 256, 642 × 128,
42 × 1024, 22 × 1024 1282 × 64, 2562 × 3

Similarity/Diversity Analysis

Intuitively speaking, the generated faces from the patches
of the same person should be similar. By contrast, patches
from different persons are supposed to yield diverse faces.
To verify this property, we collect 50 faces and pick patches
of different size around the eyes, the nose, and the mouth.
The proposed r-BTN is then applied to generate full faces
from those patches. To measure the similarity/diversity
between generated faces, we utilize the pre-trained VGG-
Face model to extract high-level features and compute their
Euclidean distance. We perform two comparisons: 1) self
comparison (similarity) and 2) mutual comparison (diver-
sity), conducting on faces generated from patches of the
same and different persons, respectively.

Missing percentage
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Figure 7. Left: Evaluation of similarity/diversity with increasing
missing percentage. Circles/triangles are averaged distances of
self comparison and mutual comparison, respectively. The bars
indicate corresponding standard deviation. Middle and right:
High-level feature (reduced to 2-D by PCA) of generated faces
at missing percentage of 10% and 95%, respectively. Differ-
ent marker types indicated different persons. There are three
same markers for type (person), denoting the generated faces from
patches around left eye, right eye, and mouth. In the right figure,
solid lines connect the faces generated from eyes, and the dashed
lines connect to the faces generated from mouth.

Fig. 7 (left) shows the averaged distance and standard devi-
ation with respect to missing percentage. The blue circles

shows the results of self comparison, and the red triangles
denote mutual comparison.

With lower missing percentage, e.g., 0.1 to 0.6, the gen-
erated faces preserve relatively high intra-class (same per-
son) similarity and inter-class (different persons) diversity.
As the missing percentage increases, the two curves even-
tually intersect, indicating the generated faces from very
small patches (e.g., 95% missing) have lost the identity of
the original face. Interestingly, we discover that the gen-
erated faces from either the left or right eye of the same
person still tend to be more similar as compared to those
generated from nose/mouth as illustrated in Fig. 7 (right).
This discovery is well in line with the quality of different
biometrics where studies have shown eyes to carry more
valuable cues than nose or mouth in face recognition tasks.
This finding, from another perspective, demonstrates the
high effectiveness of r-BTN in generating high-fidelity and
realistic faces/sketches. Fig. 8 visualizes such similarity.
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Figure 9. Convergence evaluation of the proposed r-BTN. Aver-
aged absolute (left) and average (right) of residual with respect to
iteration k are shown at missing percentage of 95%, 80%, 60%,
40%, and 20%, respectively.

Convergence Analysis

Will the generated faces/sketches converge to a certain
point? How many iterations are sufficient to achieve a
photo-realistic result? This section mainly answers these
two questions.

We first define the residual in the face domain between
subsequent iterations as rk+1 =

(
xk+1
I − xkI

)
, where xkI

and xk+1
I denote the kth and k+1th generated results. The

convergence is mainly evaluated by calculating the aver-
aged residual on testing samples (i.e., 300 samples gener-
ated with different missing percentage) with respect to k
as shown in Fig. 9 (right). However, the average residual is
not sufficient to demonstrate the convergence because some
pixels may significantly increase while the other decrease
with the same level. In this case, we calculate the averaged
absolute residual which illustrate the changing amplitude
as shown in Fig. 9 (left).

With more iterations, the averaged residual approaches
zero while the averaged absolute residual stabilizes at a
small value. This well demonstrates that the generated
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Figure 8. Given face/sketch patches (red boxes) from the same person but with different missing percentage, the proposed r-BTN gener-
ates similar sketches/faces. Please note that the given patches are mainly from one of the eyes.

faces are stable. In addition, from the experiments, the
generated faces/sketches will not significantly change af-
ter 20 iterations. Therefore, we could empirically con-
clude that the recursive generation will converge to certain
face/sketch for a given patch.

More Qualitative Results from r-BTN

Fig. 10 displays more results generated from eyes, nose,
mouth, and random regions using the proposed r-BTN. In
addition, we provide more quantitative results of generated
faces from three methods — Pix2Pix, inpainting, and r-
BTN. Fig. 11 and 12 visualize the comparison through two
examples. The proposed r-BTN generates higher fidelity
and more smooth results. However, the proposed method
cannot preserve the identity when the missing percentage

is more than 70%.
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Figure 10. Generated faces/sketches from small patches of eyes, nose, mouth, and random regions by r-BTN.
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Figure 11. Example 1: Comparison of different methods in generating faces/sketches from patches with different missing percentage.
The red boxes indicate the given face/sketch patches. The rest rows are correspondingly generated sketches/faces by the denoted
methods. Please zoom in to see the details for small missing percentages.
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Figure 12. Example 2: Comparison of different methods in generating faces/sketches from patches with different missing percentage.
The red boxes indicate the given face/sketch patches. The rest rows are correspondingly generated sketches/faces by the denoted
methods. Please zoom in to see the details for small missing percentages.


