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Abstract
Incorporates encoding-decoding nets with adver-
sarial nets has been widely applied in image
generation tasks. During training, the gradient
from reconstruction and adversarial losses are
both imposed on the generator/decoder, which
may causes instability except carefully select-
ing an appropriate weighting factor between the
two losses like existing works. In this paper,
we propose a novel structure decoupled learning,
where the reconstruction and adversarial losses
are backpropagated to separate networks (i.e., the
encoding-decoding net and the adversarial net,
respectively), thus effectively tackles the insta-
bility problem caused by their interaction. The
essential benefit is that there is no need to in-
troduce the weighting factor between the two
losses, alleviating from manual parameter adjust-
ment while largely improving the generalization
capacity of the designed model to different appli-
cations. We design a new evaluation metric, nor-
malized relative discriminative score (NRDS),
that assesses the relative quality of the gener-
ated images. Experimental results demonstrate
that the proposed decoupled learning effectively
enhances the stability and achieves competitive
performance in multiple image generation tasks
without the need of weight adjustment.

1. Introduction
In most recent practices, the encoding-decoding net-
works (ED), e.g., VAE (Kingma & Welling, 2013),
AAE (Makhzani et al., 2015), autoencoder, etc., have been
the popular structure to be incorporated with GANs for
image-conditional modeling, where the encoder extracts
features, which are then fed to the decoder/generator to
generate the target images. The encoding-decoding net-
work tends to yield blurry images. Incorporating a discrim-
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inator, as empirically demonstrated in many works (Larsen
et al., 2015; Isola et al., 2017; Ledig et al., 2016; Zhang
et al., 2017; Liu et al., 2017; Zhu et al., 2017), effectively
increases the fidelity/resolution of generated images from
the encoding-decoding networks.

In existing works that incorporate the encoding-decoding
networks (ED) to GANs, the reconstruction loss (from the
ED) and the adversarial loss (from the discriminator) are
both imposed on a single generator/decoder. Although the
ED is known to be stable in training, and many GANs
works, e.g., DCGAN (Radford et al., 2015), WGAN (Ar-
jovsky et al., 2017), LSGAN (Mao et al., 2016), etc., have
stabilized the training of GANs, coupling the reconstruc-
tion loss and the adversarial loss by making them inter-
act/compete with each other may yield unstable results or
introduce artifacts as shown in Fig.1. Existing works intro-
duce a weighting factor to balance the effect of the two
losses. However, to find an appropriate weight is often
time-consuming due to the exhaustive searching mecha-
nism adopted in these works. How to set an appropriate
weight automatically or completely remove the necessity
of the weighting factor is a problem unexplored.
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Figure 1. Artifacts introduced by the adversarial network. The
top-left row shows the generated images from ED only. The rest
rows show the images from the coupled structure (ED plus GAN)
with different weights (marked in the left of each row) applied on
the adversarial loss.

Fig. 1 illustrates the effect of adding the adversarial loss
(with different weights from 0.001 to 0.1) to the recon-
struction loss. We observe the increased fidelity of gen-
erated images as compared to the image generated from
ED only (the top-left row in Fig. 1). However, we also
observe the obvious artifacts introduced by adding the ad-
versarial loss (e.g., the 1st, 2nd faces with weights of 0.01
and 0.1). Generally, the trade-off between the two losses
needs to be carefully tuned, otherwise, the generated im-
ages may present significant artifacts, e.g., stripe, overex-
posure, spots, or anything visually unrealistic.

We denote this coupled structure between ED and GAN as
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ED+GAN1, where a higher weight on the adversarial loss
preserves richer details in generated images but suffering
higher risk of introducing significant artifacts or even caus-
ing instability, while a lower weight on the adversarial loss
would not effectively boost the image fidelity. In this paper,
we propose a novel decoupled learning structure, aiming
to solve the instability issue induced by the coupled struc-
tures. We denote the decoupled structure as ED//GAN2.

2. Decoupled Learning
Compared to ED+GAN, the uniqueness of the proposed
ED//GAN lies in the two decoupled backpropagation paths
where the reconstruction and adversarial losses are back-
propagated to separate networks, instead of imposing both
losses to generator/decoder (Dec) as done in ED+GAN.
Fig. 2 illustrates the major difference between the coupled
versus decoupled designs.
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Figure 2. Comparison between ED+GAN and ED//GAN. Left:
the existing ED+GAN. Right: the proposed ED//GAN, i.e., de-
coupled learning. Enc and Dec are the encoder and decoder net-
works, and G and D are the generator and discriminator, respec-
tively. Solid black arrows denote feedforward path, and dashed
arrows in red and blue indicate backpropagation of the reconstruc-
tion loss and the adversarial loss, respectively.

In ED+GAN, both reconstruction and adversarial losses are
backpropagated to Dec, and the general objective could be
written as

min
Enc,Dec,D

Lconst+λLadv or min
Enc,Dec,D

λLconst+Ladv,

where Lconst and Ladv denote the reconstruction and ad-
versarial losses, respectively. The parameter λ is the weight
to balance the two losses. In ED//GAN, we could relax the
weight λ, and the general objective for ED//GAN becomes

min
Enc,Dec,G,D

Lconst + Ladv.

The proposed decoupled learning (ED//GAN) is detailed in
Fig. 3. The reconstructed image from ED is IED, which
is a blurred version of the input image I . The generator
G, together with the discriminator D, learns IG which con-
tains the residual information of the generated image that

1
The coupled structures used in existing works are denoted as ED+GAN because they add

the effects of ED and GAN together during training.
2

The proposed decoupled learning is denoted as ED//GAN, indicating that the effect from
ED and GAN are learned/propagated separately through the two networks.
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Figure 3. The flow of proposed decoupled learning, i.e.,
ED//GAN. L1 indicates the pixel-level `1-norm. Solid black ar-
rows denote the feedforward path, and dashed arrows in red and
blue indicate the backpropagation from reconstruction loss (L1)
and adversarial loss (from D), respectively.

effectively increases the resolution and photo-realism of the
image. This structure generates an output image, Î . Since
I ≈ IED+IG = Î , the generator G learns the residual map
IG that reflects the details learned from the adversarial net-
work. In addition, the residual map directly illustrates how
the adversarial learning boosts the performance of ED.

Unlike existing works that couple the learning of G and
Dec (or together with Enc), we learn them separately. In
the following, we elaborate on the reconstruction learning
of Enc and Dec and the adversarial learning of G and D.
Enc and Dec (i.e., ED) are trained separately from G and D
(i.e., GAN), updated through the `1−norm in pixel level as
shown by the red dashed arrow in Fig. 3. G and D are
updated by the adversarial loss as indicated by the blue
dashed arrow. The final output image is obtained by pixel-
wise summation of the outputs from G and Dec, as denoted
by

⊕
. In the proposed ED//GAN framework, the gradi-

ent derived from reconstruction and adversarial losses are
directed in separated flows without any interaction, avoid-
ing the competition between the ED net and GAN which
may cause instability albeit widely used in existing works
as discussed in Sec. 1.

Reconstruction Learning The encoding-decoding net-
work (ED) aims to minimize the pixel-level error between
the input image I and the reconstructed image IED. The
ED could be any structure specifically designed for any ap-
plications, e.g., the U-Net (Isola et al., 2017) or the con-
ditional network (Zhang et al., 2017) with/without batch
normalization. The reconstruction loss from ED can be ex-
pressed as

Lconst(Enc,Dec) = ‖I −Dec(Enc(I))‖1,

where Enc and Dec indicate the encoder and decoder.

Adversarial Learning In the proposed ED//GAN, GAN
works differently from the vanilla GAN in two aspects: 1)
The inputs of G are features of the input image (sharing the
latent variable z with Dec) rather than the random noise. 2)
The faked samples fed to D are not directly generated by
G. Instead, they are conditioned on the output from Dec.
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Therefore, the losses of GAN can be expressed as

Ladv(D) =E [log (1−D(I))] + E [logD (IED + IG))],

Ladv(G) =E [log (1−D (IED +G(z)))] ,

where IED = Dec(z) and z = Enc(I). Finally, we
obtain the objective of the proposed decoupled learning
(ED//GAN),

min
Enc,Dec

Lconst(Enc,Dec) + min
G
Ladv(G) + min

D
Ladv(D).

Note that there are no weighting parameters between the
losses in the objective function, which relaxes the man-
ual tuning that may require an expert with strong domain
knowledge and rich experience. During training, each com-
ponent could be updated alternatively and separately be-
cause the three components do not overlap in backpropa-
gation, i.e., the backpropagation paths are not intertwined.

Visualizing the Boost from Adversarial Learning The
ED//GAN helps to investigate how the discriminator in-
dependently boosts the quality of generated images. In
ED+GAN, however, the effect of discriminator is difficult
to directly identify because it is coupled with the effect of
ED. The learned residual in ED//GAN is considered the
boosting factor from the adversarial learning (discrimina-
tor). Generally, the images from ED tend to be blurry,
while the residual from GAN carries the details or impor-
tant texture information for photo-realistic image genera-
tion. Imposing the residual onto the reconstructed images
is supposed to yield higher-fidelity images as compared to
the reconstructed images. In Fig. 4, we can observe that the
adversarial learning mainly enhances the edges at eyebrow,
eyes, mouth, teeth, etc. (see Fig. 4, middle of each triple)
Adding the residual to the blurry images from ED (Fig. 4
left), the output images present finer details.

Figure 4. Visualization of the boost from adversarial learning.
From left to right in each triple: reconstruction, residual, and out-
put images from ED//GAN.

3. Experimental Evaluation
We evaluate the proposed decoupled learning mainly from
its ability in relaxing the weight setting and stabilizing
the training process. We compare the proposed ED//GAN
to the traditional ED+GAN based on two datasets, i.e.,
UTKFace (Zhang et al., 2017) and the CMP Facade
Database (Radim Tyleček, 2013). Details regarding the
network structures and datasets are given in the supplemen-
tary materials.

3.1. Evaluation Metric

Evaluation metrics for generative models or generated im-
ages are still limited and human evaluation has been ap-
plied in many works (Isola et al., 2017; Zhang et al., 2017).
Inception score (Salimans et al., 2016) and related meth-
ods (Odena et al., 2016) were proposed in recent years,
aiming to provide a metric to evaluate the quality of gen-
erated images or the generative model. However, inception
score highly depends on the availability of good classifiers
which require labeled datasets, and is inappropriate for our
evaluations. We propose the normalized relative discrimi-
native score (NRDS) to assess the images generated from
different models. Instead of providing an absolute score for
each individual model, the proposed NRDS aims to com-
pare two or multiple models, giving a relative score to il-
lustrate which model is better than the others. NRDS trains
a discriminator/classifier on real images and generates im-
ages from two or multiple models that need to be compared.
During training, the output from the discriminator will tend
to 1 for real images and approach 0 for generated images,
but the approaching speed will differ for different models.
Intuitively, a model that generates relatively more photo-
realistic images will approach 0 slower, and vice versa. A
toy example is shown in supplementary materials. There-
fore, the speed of approaching 0 implies the image qual-
ity generated from a model. There are three steps to com-
pute NRDS: 1) Obtain the curve Ci (i = 1, 2, · · · , n) of
discriminator output vs. epoch (or mini batch) for each
model (assuming n models) during training; 2) Compute
the area under each curve A(Ci); and 3) Compute NRDS
of the ith model by NRDSi = A(Ci)∑n

j=1 A(Cj) . Generally, a
larger NRDS indicates relatively better image quality, and∑

iNRDS = 1.

3.2. Stabilizing the Training Process

To evaluate the stability of the proposed decoupled learning
regardless of the weight setting and batch normalization,
we compare the proposed decoupled learning (ED//GAN)
with the traditional method (ED+GAN). We increase the
weight of adversarial loss to compare the quality of gen-
erated images from the two structures. We fix the weight
of reconstruction at 1 and increase the weight of the adver-
sarial loss from 0.001 to 1 with the step of 10x. After 200
epochs with the batch size of 25, Fig. 5 compares the out-
put images without/with batch normalization. Compared
to ED+GAN, the proposed ED//GAN can yield more stable
outputs that are insensitive to weight changes. The NRDS
results of images illustrated in Fig. 5 is listed in Table 2.
Testing results from all methods (with different weight set-
tings) are collected to train a single discriminator. We ob-
serve that ED//GAN generally yield higher NRDS, indicat-
ing better image quality. In addition, the NRDS values for
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Table 1. NRDS on the results partially illustrated in Fig. 6 (left) and Fig. 7 (right).

Method ED+GAN ED//GAN ED+GAN ED//GAN
1:1 100:1 1000:1 1:10−4 1:10−2 1:1

NRDS .2190 .2641 .2572 .2597 .2527 .2496 .2430 .2547

Figure 5. Comparison of ED//GAN (top) and ED+GAN without
(middle) and with (bottom) batch normalization on ED using the
UTKFace dataset. From left to right, the weights on the adversar-
ial loss are 0.001, 0.01, 0.1, and 1, respectively.

ED//GAN vary much less than those of ED+GAN, as ob-
served from the lower standard deviation (std), indicating
robustness against different weights.

Table 2. NRDS with different weight settings and their std.
0.001 0.01 0.1 1 std

ED+GAN .1172 .1143 .1163 .0731 .0215
ED+GAN2 .1066 .1143 .1268 .1267 .0099
ED//GAN .1432 .1434 .1458 .1466 .0017

ED+GAN2 denote the structure with batch normalization

3.3. From Coupled Learning to Decoupled Learning

To illustrate the effectiveness of ED//GAN, we adapt sev-
eral existing works that use the ED+GAN structure to
ED//GAN and compare the generated images. We modify
two works: 1) Pix2Pix (Isola et al., 2017) for image trans-
formation and 2) CAAE (Zhang et al., 2017) for image ma-
nipulation (face aging). We modify them by parallelizing
an extra generator to the original one to learn the residual.
More details are shown in the supplementary. The weight
of reconstruction and adversarial losses is set to be 100 and
1 (i.e., 100:1) in Pix2Pix (Isola et al., 2017). In Fig. 6, we
use the weights of 1:1, 100:1, and 1000:1 for the original
structure (ED+GAN) and compare with the modified ver-
sion using the decoupled structure (ED//GAN).

We observe that the generated images with the weight of
1:1 introduce significant artifacts (please zoom in for bet-
ter view). With higher weight on the reconstruction loss,
100:1 and 10:1 yield more realistic images, whose quality
is similar to that from the modified decoupled structure that
does not need weight setting.

Input Real 1:1 100:1 1000:1 ED//GAN

Figure 6. Comparison between Pix2Pix (Isola et al., 2017) and the
modified version using the proposed ED//GAN.

We modify CAAE to the decoupled ED//GAN structure.
Fig. 7 shows some random examples to compare the origi-
nal and modified structures. The weights of the reconstruc-
tion and adversarial losses are 1 and 10−4 (i.e., 1:10−4)
in the original work. We use a couple of different weight
settings, 1:10−4, 1:10−3, 1:10−2, and 1:1, for the original
structure and compare the results with the modified decou-
pled structure. Table 1 lists the NRDS.

1:10−4 1:10−2 1:1 ED//GAN

Figure 7. Comparison between CAAE (Zhang et al., 2017) and
the modified version using the proposed ED//GAN.

4. Conclusion
This paper proposed the novel decoupled learning struc-
ture (ED//GAN) for image generation tasks with image-
conditional models. Different from existing works where
the reconstruction loss (from ED) and the adversarial loss
(from GAN) are backpropagated to a single decoder, re-
ferred to as the coupled structure (ED+GAN), in ED//GAN,
the two losses are backpropagated through separate net-
works, thus avoiding the interaction/competition between
each other. The essential benefit of the decoupled structure
is such that the weighting factor that has to be fine-tuned in
ED+GAN is no longer needed in the decoupled structure,
thus improving stability without looking for the best weight
setting. This would largely facilitate the wider realization
of more specific image generation tasks. The experimental
results demonstrated the stability of the decoupled learning.
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Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

Isola, Phillip, Zhu, Jun-Yan, Zhou, Tinghui, and Efros,
Alexei A. Image-to-image translation with conditional
adversarial networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

Kingma, Diederik P and Welling, Max. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Larsen, Anders Boesen Lindbo, Sønderby, Søren Kaae,
Larochelle, Hugo, and Winther, Ole. Autoencoding be-
yond pixels using a learned similarity metric. arXiv
preprint arXiv:1512.09300, 2015.

Ledig, Christian, Theis, Lucas, Huszár, Ferenc, Caballero,
Jose, Cunningham, Andrew, Acosta, Alejandro, Aitken,
Andrew, Tejani, Alykhan, Totz, Johannes, Wang, Ze-
han, et al. Photo-realistic single image super-resolution
using a generative adversarial network. arXiv preprint
arXiv:1609.04802, 2016.

Liu, Ming-Yu, Breuel, Thomas, and Kautz, Jan. Unsu-
pervised image-to-image translation networks. arXiv
preprint arXiv:1703.00848, 2017.

Makhzani, Alireza, Shlens, Jonathon, Jaitly, Navdeep,
Goodfellow, Ian, and Frey, Brendan. Adversarial autoen-
coders. arXiv preprint arXiv:1511.05644, 2015.

Mao, Xudong, Li, Qing, Xie, Haoran, Lau, Raymond YK,
and Wang, Zhen. Least squares generative adversarial
networks. arXiv preprint ArXiv:1611.04076, 2016.

Nilsback, M-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Proceedings
of the Indian Conference on Computer Vision, Graphics
and Image Processing, Dec 2008.

Odena, Augustus, Olah, Christopher, and Shlens, Jonathon.
Conditional image synthesis with auxiliary classifier
gans. arXiv preprint arXiv:1610.09585, 2016.

Radford, Alec, Metz, Luke, and Chintala, Soumith. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.
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supplementary
A. Stabilizing the Training Process

To evaluate the stability of the proposed decoupled learning
regardless of the weight setting and batch normalization,
we compare the proposed decoupled learning (ED//GAN)
with the traditional method (ED+GAN). Two factors are
considered here: 1) the weight of adversarial loss and 2)
batch normalization which is a common way to stabilize
the training process. We increase the weight of adversarial
loss to compare the quality of generated images from the
two structures. We fix the weight of reconstruction at 1 and
increase the weight of the adversarial loss from 0.001 to 1
with the step of 10x. After 200 epochs with the batch size
of 25, Figs. 8 and 9 compare the output images with and
without batch normalization, respectively.

Figure 8. Comparison of ED//GAN (top) and ED+GAN (bottom)
with batch normalization on ED using the UTKFace dataset.
From left to right, the weights on the adversarial loss are 0.001,
0.01, 0.1, and 1, respectively. Please zoom in for better view.

The output images from ED//GAN generates relatively
higher-fidelity images regardless of the weight change.
However, the outputs of ED+GAN are significantly af-
fected by the weight value. It obtains relatively better re-
sults when the weight of the adversarial loss is 0.001. As
the weight increases, the outputs become unstable, i.e., the
images start presenting significant artifacts and fall into
fewer modes.

In Fig. 9, the batch normalization in ED is removed. The
proposed ED//GAN can still yield stable outputs, while the
ED+GAN generates images with stripe, spots, noise, etc.

Figure 9. Comparison of ED//GAN (top) and ED+GAN (bottom)
without batch normalization on ED using the UTKFace dataset.
From left to right, the weights on the adversarial loss are 0.001,
0.01, 0.1, and 1, respectively.

From the two experiments, ED//GAN vs. ED+GAN

with/without batch normalization on ED, we can observe
that the proposed decoupled learning presents stable per-
formance and is insensitive to weight changes, thus relax-
ing the weight setting in ED//GAN. The NRDS results of
images illustrated in Figs. 8 and 9 are listed in Tables 3
and 4, respectively. In each table, testing results from all
methods (with different weight settings) are collected to
train a single discriminator. From Tables 3 and 4, we ob-
serve that ED//GAN generally yield higher NRDS, indicat-
ing better image quality. In addition, the NRDS values for
ED//GAN vary much less than those of ED+GAN, as ob-
served from the lower standard deviation (std), indicating
robustness against different weights.

Table 3. NRDS and their standard derivation (std) on the results
partially illustrated in Fig. 8.

0.001 0.01 0.1 1 std
ED+GAN .1066 .1143 .1268 .1267 .0099
ED//GAN .1320 .1300 .1300 .1336 .0017

Table 4. NRDS and their standard derivation (std) on the results
partially illustrated in Fig. 9.

0.001 0.01 0.1 1 std
ED+GAN .1172 .1143 .1163 .0731 .0215
ED//GAN .1432 .1434 .1458 .1466 .0017

We also apply the proposed ED//GAN structure on the
CUB-200 and Oxford Flower datasets without any weight
parameters to further demonstrate the generality and sta-
bility of the decoupled learning structure. Fig. 10 displays
the results after 200 epochs. The outputs gain more de-
tails compared to the reconstructed images. The residual
illustrates that both details and colors are enhanced by the
adversarial network.

Figure 10. Output of ED//GAN trained on the CUB-200 and Ox-
ford Flower datasets. From left to right in each triple: reconstruc-
tion, residual, and output images.

B. From Coupled Learning to Decoupled Learning

In both Enc and Dec, the kernel size is 5 × 5, and the
stride is 2. The activation function is ReLU or Leaky ReLU
(LReLU) for each hidden layer. The output layer adopts the
hyperbolic tangent (tanh) function. Batch normalization
is optionally applied before activation functions. ADAM
optimizer is adopted with the learning rate of 0.0002 and
β1 = 0.5.
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B.1 NETWORK STRUCTURE FOR SECTION 3.2

This network is neither specifically designed for any ap-
plications nor delicately fine-tuned to achieve the best re-
sult. The goal is to demonstrate the stability of the propose
method (ED//GAN) as compared to the traditional method
(ED+GAN). Therefore, we only need to ensure that both
methods are compared fairly on the same structure and us-
ing the same hyperparameters.
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loss

Adversarial 

loss
D

Reconstruction 

loss

Adversarial 

loss

G

Enc EncDec Dec

ED+GAN ED//GAN

Figure 11. Left: the existing ED+GAN. Right: the adaption based
on the proposed ED//GAN, i.e., decoupled learning. Solid black
arrows denote the feedforward path, and dashed arrows in red and
blue indicate backpropagation from the reconstruction loss and
the adversarial loss, respectively. The network details are listed in
Table 5.

Table 5. Structure of the Enc and Dec networks as shown in
Fig. 11. The value 50 indicates a vector with the length of 50.
Batch normalization is optional as indicated by (BN). The size of
each layer is denoted by h× w × c, corresponding to width, and
number of channels, respectively.

Enc Size
Input 128× 128× 3
Conv, (BN), ReLU 64× 64× 64
Conv, (BN), ReLU 32× 32× 128
Conv, (BN), ReLU 16× 16× 256
Conv, (BN), ReLU 8× 8× 512
Conv, (BN), ReLU 4× 4× 1024
Reshape, FC, tanh 50

Dec Size
Input 50
FC, ReLU, (BN), Reshape 4× 4× 1024
Deconv, (BN), ReLU 8× 8× 512
Deconv, (BN), ReLU 16× 16× 256
Deconv, (BN), ReLU 32× 32× 128
Deconv, (BN), ReLU 64× 64× 64
Deconv, tanh 128× 128× 3

The generator G uses the same structure as Dec, and they
share the latent variable z. The discriminator D adopts the
similar structure as Enc, but the length of output is 1 (indi-
cating real and fake) instead of 50 (the latent variable z). In
G and D networks, batch normalization is applied to ensure
stable training of GAN as suggested in DCGAN (Radford
et al., 2015).

B.2 NETWORK STRUCTURE FOR IMAGE
TRANSFORMATION IN SECTION 3.3

We adapt the network in Pix2Pix (Isola et al., 2017), which
is ED+GAN structure, to the proposed ED//GAN structure
as shown in Fig. 12.

D

Reconstruction 

loss

Adversarial 

loss

Pix2Pix (ED+GAN) Adaptation to ED//GAN

U-Net

D

Reconstruction 

loss

Adversarial 

loss
U-Net

U-Net

Figure 12. Left: the structure of Pix2Pix (ED+GAN). Right: the
adaption to the proposed ED//GAN, i.e., decoupled learning.
Solid black arrows denote the feedforward path, and dashed ar-
rows in red and blue indicate backpropagation from the recon-
struction loss and the adversarial loss, respectively.

In Pix2Pix, the ED is implemented by the U-Net, which
directly passes feature maps from encoder to decoder, pre-
serving more details. For simplicity and not breaking the
structure of U-Net, we apply another U-Net as the gener-
ator G in correspondingly adaption to ED//GAN. The dis-
criminator adopts the same network structure as in Pix2Pix.
The network details are listed in Table 6.

Table 6. Structure of U-Net network as shown in Fig. 12. Enc and
Dec denote the encoding and decoding part in U-Net, respectively.
The number of channels of the hidden layers in Dec are twice of
those in Enc because of the direct passing.

Enc Size
Input 256× 256× 3
Conv, BN, LReLU 128× 128× 64
Conv, BN, LReLU 64× 64× 128
Conv, BN, LReLU 32× 32× 256
Conv, BN, LReLU 16× 16× 512
Conv, BN, LReLU 8× 8× 512
Conv, BN, LReLU 4× 4× 512
Conv, BN, LReLU 2× 2× 512
Conv, BN, LReLU 1× 1× 512

Dec Size
Input 1× 1× 512
Deconv, BN, ReLU, Dropout 2× 2× 1024
Deconv, BN, ReLU, Dropout 4× 4× 1024
Deconv, BN, ReLU, Dropout 8× 8× 1024
Deconv, BN, ReLU 16× 16× 1024
Deconv, BN, ReLU 32× 32× 512
Deconv, BN, ReLU 64× 64× 256
Deconv, BN, ReLU 128× 128× 128
Deconv, Tanh 256× 256× 3
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B.3 NETWORK STRUCTURE FOR IMAGE
MANIPULATION IN SECTION 3.3

We adapt the face aging work (Zhang et al., 2017) (CAAE),
which proposed a conditional ED+GAN structure, to the
proposed ED//GAN structure as shown in Fig. 13. CAAE
generated aged face by manipulating the label concatenated
to the latent variable z from Enc.

D

Reconstruction 

loss

Adversarial 

loss
D

Reconstruction 

loss

Adversarial 

loss

G

Enc EncDec Dec

Face Aging (ED+GAN)
Adaptation to ED//GAN

y

z

y

z

Figure 13. Left: the ED+GAN structure used in CAAE (Zhang
et al., 2017). Right: the adaption to the proposed ED//GAN, i.e.,
decoupled learning. Solid black arrows denote the feedforward
path, and dashed arrows in red and blue indicate backpropagation
from the reconstruction loss and the adversarial loss, respectively.
The age label y is concatenated to z to control the age of generated
faces.

The original network used in CAAE has an extra discrimi-
nator on z to fore z uniformly distributed. We do not show
this discriminator in Fig. 13 because it does not affect the
adaptation. The network details are listed in Table 7.

C. Normalized Relative Discriminative Score (NRDS)

To illustrate the computation of NRDS, Fig. 14 shows a toy
example. Assume the samples of fake-close and fake-far
are generated from two different models, aiming to sim-
ulate the real samples. We train a discriminator on the
real and fake (i.e., fake-close and fake-far) samples. The
structure of discriminator is a neural network with two hid-
den layers, both of which has 32 nodes, and the ReLU is
adopted as the activation function. After each epoch, the
discriminator is tested on the samples from real, fake-close,
and fake-far, respectively. Specifically, all the real sam-
ples are fed to the discriminator, and then we compute the
mean of the outputs from the discriminator. Repeating this
process, we get the averaged outputs from the samples in
fake-close and fake-far, respectively. Finally, we achieve
the curves as shown in Fig. 14 (right). Intuitively, the curve
of fake-close approaches zero slower than that of fake-far
because the samples in fake-close are more close (similar)
to the real samples.

NRDS is computed based on these curves — area under
the curve. The area under the curves of fake-close (C1) and
fake-far (C2) areA(C1) = 145.4955 andA(C2) = 71.1057,
respectively. Then, the NRDS for fake-close (NRDS1)

Table 7. Structure of the Enc, Dec, G, and D networks as shown in
Fig. 7. The value 50 indicates a vector with the length of 50.The
concatenated age vector y is 50. Structure of the “G” and “D”
networks as shown in Fig. 13. The value 50 indicates a vector
with the length of 50. The concatenated age vector y is 50. If use
WGAN or LSGAN, the BN is optional in G.

Enc Size
Input 128× 128× 3
Conv, ReLU 64× 64× 64
Conv, ReLU 32× 32× 128
Conv, ReLU 16× 16× 256
Conv, ReLU 8× 8× 512
Conv, ReLU 4× 4× 1024
Reshape, FC, tanh 50

Dec Size
Input 50 + 50 (length of the label)
FC, ReLU, Reshape 8× 8× 1024
Deconv, ReLU 16× 16× 512
Deconv, ReLU 32× 32× 256
Deconv, ReLU 64× 64× 128
Deconv, ReLU 128× 128× 64
Deconv, tanh 128× 128× 3

G Size
Input 50 + 50 (length of the label)
FC, BN, ReLU, Reshape 8× 8× 1024
Deconv, BN, ReLU 16× 16× 512
Deconv, BN, ReLU 32× 32× 256
Deconv, BN, ReLU 64× 64× 128
Deconv, BN, ReLU 128× 128× 64
Deconv, tanh 128× 128× 3

D Size
Input 128× 128× 3
Conv, BN, ReLU 64× 64× (16 + 50)
Conv, BN, ReLU 32× 32× 32
Conv, BN, ReLU 16× 16× 64
Conv, BN, ReLU 8× 8× 128
Reshape, FC, ReLU 1024
FC, sigmoid 1

and fake-far (NRDS2) can be computed by

NRDS1 =
A(C1)∑2
i=1A(Ci)

= 0.6717, (1)

NRDS2 =
A(C2)∑2
i=1A(Ci)

= 0.3283, (2)

where NRDS of fake-close is higher than that of fake-far,
indicating better generated samples, i.e., closer to real sam-
ples. Therefore, we can evaluate the model of generating
fake-close as relatively better.
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Figure 14. A toy example of computing NRDS. Left: the real and
fake samples randomly sampled from 2-D normal distributions
with different means but with the same (identity) covariance. The
real samples (blue circle) is with zero mean. The red “x” and
yellow “+” denote fake samples with the mean of [−.5, 0] and
[1.5, 0], respectively. The notation fake-close/far indicates that
the mean of correspondingly fake samples is close to or far from
that of the real samples. Right: the curves of epoch vs. averaged
output of discriminator on corresponding sets (colors) of samples.

D. Datasets

Four datasets are used to evaluate the effectiveness
and stability of the proposed decoupled learning: 1)
UTKFace (Zhang et al., 2017), 2) Caltech-UCSD
Birds 200 (CUB-200) (Wah et al., 2011), 3) Oxford
Flower (Nilsback & Zisserman, 2008) and 4) CMP Facade
Database (Radim Tyleček, 2013). The UTKFace dataset
consists of about 20,000 aligned and cropped faces with
large diversity in age and race. The decoupled learning
applied on the UTKFace dataset aims to demonstrate the
performance on image manipulation tasks. The CUB-200
dataset has 6,033 images of 200 birds species with large
and diverse background, including ocean, trees, flowers,
etc. The Oxford Flower dataset are images of flowers with
diverse species and colors. The decoupled learning is ap-
plied on these two datasets to demonstrate the stability and
generalization on image generation tasks. The CMP Fa-
cade dataset is utilized to illustrate the performance of the
decoupled learning on image transformation tasks. These
four datasets are in different domains (because of different
objects and background). The experimental results vali-
date the robustness and stability of the decoupled learning
in parameter relaxation, i.e., guaranteeing stable training
without parameter tuning on any datasets.


