
GANs Powered by Autoencoding — A Theoretic Reasoning

Zhifei Zhang 1 Yang Song 1 Hairong Qi 1

Abstract
Many recent works integrate GANs with autoen-
coding (AE) networks to generate photo-realistic
images conditioned on input images. It has been
observed empirically that the addition of the AE
network, besides generating images under cer-
tain condition, helps alleviate the mode missing
and instability problems during training. The
main objective of this work is not to propose
new solutions, but rather we take the first at-
tempt in providing theoretical reasoning on why
the AE-based GAN structure is able to remedy
the mode missing and instability issues. We fur-
ther show that by adding an adaptive decay vari-
able to the adversarial error, the instability issue
caused by competition between the generator and
discriminator is largely alleviated. Experimen-
tal results on compositional digits, natural im-
ages, and faces all show superior performance of
autoencoding-based GAN in handling the mode
missing and instability problems.

1. Introduction
Despite the great potential, the vanilla (non-conditional)
GANs are still generally considered very difficult to train
with undamped oscillations often occurring during the con-
vergence process; and on top of that, they suffer from the
so-called mode missing problem, where large volumes of
probability mass tend to collapse onto a few modes (Che
et al., 2016). In recent years, multiple works have been
proposed to tackle the problem of mode missing and insta-
bility during training. Generally speaking, these methods
can be divided into two categories: 1) strategy-based meth-
ods and 2) autoencoding-based methods.

The strategy-based methods preserve the basic structure of
GANs but improve the objective or the way how the gen-
erator and/or discriminator is updated. For example, (Ar-
jovsky & Bottou, 2016) suggested to add continuous noise

1University of Tennessee, Knoxville, TN USA. Correspon-
dence to: Zhifei Zhang <zzhang61@vols.utk.edu>.

ICML 2017 Workshop on Implicit Models. Copyright 2017 by
the author(s).

to the input of discriminator, which could fix the instabil-
ity and vanishing gradients issues. (Metz et al., 2016) un-
rolled the iterative updating procedure of GANs and ap-
proximated the discriminator toward optimal when updat-
ing the generator. (Durugkar et al., 2016) extended GANs
to multiple discriminators and trained the generator against
the best available discriminator. In this process, they also
tried to obtain more optimal discriminator while updating
the generator. (Salimans et al., 2016) introduced an extra
layer into the discriminator to coordinate all samples with
a mini batch, instead of considering those samples as inde-
pendent like in the original GANs. This method avoided
the collapse of the generator. Recently, LSGAN (Mao
et al., 2016) and WGAN (Arjovsky et al., 2017) modified
the original objective of GAN to improve stability.

In autoencoding-based methods, (Salimans et al., 2016)
proposed feature matching that utilized an intermediate
layer of the discriminator (behaves like an encoder) to
minimize the feature distance between the real and gen-
erated data. (Larsen et al., 2016) combined GAN with
VAE (Kingma & Welling, 2014), thus utilizing reconstruc-
tion error between the real and generated data to regulate
the training. Similarly, (Donahue et al., 2016; Che et al.,
2016) incorporated the autoencoding structure into GANs
to avoid mode missing as well as stabilize the training pro-
cedure. (Li et al., 2015) proposed an alternative way of
learning a generative model by maximum mean discrep-
ancy (MMD). All of these works share the similar idea —
directly matching the statistics of generated data to that of
the real data by introducing an autoencoder-like architec-
ture. In the original GANs, however, the statistics of gen-
erated data is matched to that specified by a discrimina-
tor (indirect estimate of the real data distribution), which
has been demonstrated to cause mode missing (Metz et al.,
2016; Che et al., 2016).

Compared to the strategy-based methods, which has strong
theoretical support as in (Arjovsky & Bottou, 2016; Ar-
jovsky et al., 2017), the autoencoding-based solutions tend
to be heuristic-driven that lack theoretic reasoning. Al-
though, AE-based solutions are capable of solving the
mode missing problem and have the potential of stabilizing
the training of GANs, the validation is only done through
empirical study.

GANs Powered by Autoencoding — A Theoretic Reasoning

The contribution of this paper is thus two-fold. First, we
provide theoretic reasoning on why AE-based GANs can
remedy the mode missing problem. Second, we propose
an adaptive decay mechanism that effectively stabilizes the
training of AE-based GANs. The effectiveness is validated
through, again, theoretic reasoning. We emphasize that the
contribution of the paper is not to propose the AE-based
GANs, but rather, we aim for the reasoning of this structure
in its effective handling of the mode missing problem and
the instability problem.

The rest of the paper is organized as follows. Section 2
elaborates on the theoretical reasoning on why incorporat-
ing an AE to GAN could solve the mode missing problem.
A simple but effective method of decaying the undamped
oscillation as the generator approaching optimum is pro-
posed in section 3 to further stabilize the training process.
Experimental result are shown in section 4. Finally, sec-
tion 5 concludes the paper.

2. Autoencoding Remedies Mode Missing
The mode missing problem is mainly caused by the insuffi-
cient punishment on the condition of pg(x) < px(x), where
pg(x) indicates the probability that a sample x is generated
by the generator, and px(x) indicates the probability that a
sample x appears in the real data. It indicates that a real
sample is with lower probability to be generated. To solve
this problem, an extra penalty could be added to empha-
size the cost on mode missing. A possible solution is to
minimize KL(px‖pg), which is an asymmetric measure-
ment, punishing more on mode missing than on unreality
(i.e., pg(x) > px(x)). We will derive that minimizing
KL(px‖pg) is equivalent to minimizing the reconstruction
error in autoencoding. From the KL divergence,

KL(px‖pg) =

∫
Ωx

px(x) log
px(x)

pg(x)
dx

=Ex∼px [log px(x)]− Ex∼px [log pg(x)] ,

where Ex∼px [log px(x)] could be considered as a constant
because the unknown data distribution is fixed. We need to
update G to maximize Ex∼px [log pg(x)], which fits pg to
px without mode missing. However, we only have obser-
vations drawn from px and pg instead of analytical expres-
sion, so direct comparison between px and pg is intractable.
An intuitive way of comparing two unknown distributions
would then be the Monte Carlo method, which estimates
distance of two arbitrary distributions by repeated random
sampling. A direct measurement is maximum mean dis-
crepancy (MMD), which measures the kernel-based dis-
tance of every sample pair within and between px and pg .
In other word, MMD blindly computes the distance of all
sample pairs. Yet a more effective measurement is to com-
pare the sample pairs assigned by the Hungarian method,

where the average distance between non-repetitive pairs is
minimized. Assume two large but finite sample sets Xx and
Xg , of the same size, n, randomly drawn from px and pg ,
respectively. Suppose the Hungarian assignment function
is H : Xx → Xg based on a distance metric L(x,H(x)),
x ∈ Xx and H(x) ∈ Xg , such that Ex∈Xx [L(x,H(x))] is
minimized. Then the distance between px and pg can be
measured by

Ex∈Xx [L(x,H(x))]. (1)

Ideally, if px = pg , Eq. 1 achieves its minimum. In prac-
tice, the training dataset could be considered as Xx, and
Xg consists of the generated samples. In GANs, G(z) gen-
erates Xg from random sampling, z ∼ pz . However, in
mini-batch learning, the size of Xx is limited (i.e., 50 or
100), which cannot sufficiently represent the true distribu-
tion of px. Such limited number of random samples would
result in larger average distance from Eq. 1. Furthermore,
the computational complexity of Hungarian matching is
O(n3). Therefore, it will be more efficient if the Hungar-
ian assignment function H : Xx → Xg is learned through
a network.

In many existing works, H(x) is interpreted as an
encoding-decoding (AE) structure where the input-output
pairs would result in minimum average distance, and
L(x,H(x)) may be interpreted as the reconstruction error.
For example, (Larsen et al., 2016; Che et al., 2016) concate-
nated an encoder to the generator, which together forms an
AE that is equivalent to the functionality of H(x). (Sali-
mans et al., 2016) reused the discriminator network as an
encoder to compare higher level feature of the real and gen-
erated data, in which the discriminator also performed like
L(x,H(x)). Although many related works have verified
the effectiveness of incorporating AE to the GAN, the dis-
cussion is rather heuristic and empirical. Here, we provide
theoretic reasoning of the effectiveness from the perspec-
tive of avoiding mode missing.

For the case of AE,H(x) = G(E(x)), whereE(x) = z de-
notes an encoder. Rewriting Eq. 1, the equivalent tractable
objective is

Ex∼px [L(x,G(E(x)))] . (2)

Adding Eq. 2 to the original formulation of GANs (Good-
fellow et al., 2014), we obtain the new objective function
that penalizes both unrealisticness and mode missing,

Ex∼px [log (D(x)(1−D(H(x)))) + λL(x,H(x))], (3)

where λ balances the effect of reconstruction error, and
H(x) = G(E(x)).

3. Adaptive Decay Stabilizes the Training
Compared to the objective of GANs, Eq. 3 appends an ex-
tra regularization Ex∼px [L(x,H(x))], whose gradient with

GANs Powered by Autoencoding — A Theoretic Reasoning

respect to the generator is non-zero if we do not consider
overfitting. Therefore, the problem of gradient vanishing
(analyzed in supplementary) is naturally resolved. For the
problem of instability, it tends to occur whenG approaches
optima, which makes ‖Ex∼pg [D(x) − 1]‖2 approach 0,
resulting in gradient explosion. In addition, even though
the discriminator and generator both achieve optimum, the
loss of G is not zero, causing the undamped oscillation.
To solve this problem, we introduce a variable αL ≤ 1
whose value will reduce as G approaches its optimum, i.e.,
Ex∼px [L(x,H(x))] approaches zero. Then, Eq. 3 can be
rewritten as

Ex∼px [log(D(x)(1− αLD(H(x)))) + λL(x,H(x))],

where αL = min{αEx∼px [L(x,H(x))], 1}, α ∈ [0,∞).
Intuitively, if α = 0, the effect of discriminator is dimin-
ished, then the network functions as an AE. If α approaches
infinity, it becomes a normal GAN+AE.

When updating the generator, αL is considered a constant
computed before the update. Then, the gradient of genera-
tor with parameter θ is

∆θ = Ex∼px
[
αL∇θD(H(x))

αLD(H(x))− 1
+ λ∇θL(x,H(x))

]
.

For differentiable D and G, ∇θD(H(x)) = C1 is finite,
and D(H(x)) = C2 ∈ [0, 1]. Although the extreme case
D(H(x)) = 1 yields infinite ∆θ, an αL < 1 could sup-
press the unstable update driven by the discriminator.

The more general instability scenario is the undamped os-
cillation when both D and G approach their optima, then
D(x) ≈ D(H(x)) ≈ 1/2. In addition,∇θL(x,H(x)) = ε,
which is a small value. We thus have

∆θ|θ=θ∗ = Ex∼px
[

αLC1

αLC2 − 1
+ ε

]
. (4)

In vanilla GAN or GAN+AE (αL = 1), ∆θ 6= 0, although
px = pg . Then, the training process will arrive at the Nash
equilibrium and present undamped oscillation on ∆θ. On
the contrary, by incorporating αL, which may decrease ex-
ponentially with L(x,H(x)), the gradient flows from the
discriminator will be significantly suppressed towards zero.

For the update of discriminator with parameter φ,

∆φ = Ex∼px
[
∇φD(x)

D(x)
+
αL∇φD(H(x))

αLD(H(x))− 1

]
, (5)

which approaches infinity if D(x)|x∼px → 0. This would
effectively discourage the strategy of training the genera-
tor for a long time without updating the discriminator. To
ensure symmetric objective, let αL = 1 (α → ∞) when
updating the discriminator.

4. Experimental Evaluation
We claim that incorporating AE is a more appealing way
to stabilize the training of GANs and avoid mode missing.
Table 1 displays the methods in comparison.

Table 1. Notation of methods in comparison
Notation Method
GAN Vanilla GAN (Goodfellow et al., 2014)
LSGAN Least square GAN (Mao et al., 2016)
GMMN Minimize MMD (Li et al., 2015)
GAN+MMD Incorporate MMD as loss function
GAN+MB Mini-batch (Salimans et al., 2016)
GAN+UR Unrolled GAN (Metz et al., 2016)
GAN+AE Incorporate AE to GAN

For fair comparison, we implement each method with the
same architecture of convolution and deconvolution net-
works (detailed in the supplementary). Note that the net-
work is not delicately designed to achieve the best perfor-
mance, since the ultimate goal is to demonstrate the stabil-
ity by adding AE to GAN. The parameter λ = 100 (Eq. 3)
in all experiments. We first compare the convergence speed
on MNIST (LeCun et al., 1998), then estimate the num-
ber of missing modes of each method on the compositional
MNIST with 1000 modes. In addition, CIFAR10 and three
face datasets (i.e., Morph (Ricanek & Tesafaye, 2006) and
FGNET (Lanitis et al., 2002), CelebA (Liu et al., 2015))
are used to visualize the performance on generating natural
images. Finally, we verify the proposed training strategy in
decaying the undamped oscillation problem.

4.1. MNIST

We apply all the methods in Table 1 on the MNIST dataset,
and the interpolation results between two random digits at
epochs 1 and 10 are shown in Fig. 1. Obviously, GMMN
cannot generate clear digits, GAN+UR converges very
slowly, and GAN+AE presents the best image quality vi-
sually and quantitatively with the highest inception score.

GAN LSGAN GMMN GAN+MMD GAN+MB GAN+UR GAN+AE

Figure 1. Comparison of different methods on MNIST dataset.
Top: 1 epoch. Bottom: 10 epochs.

4.2. Compositional MNIST

The compositional MNIST dataset is constructed by ran-
domly picking three digits from MNIST and form a three-
digit number from 000 to 999 by stitching them horizon-

GANs Powered by Autoencoding — A Theoretic Reasoning

Table 2. Number of missed modes on the compositional MNIST
Epoch GAN LSGAN GMMN GAN+MMD GAN+MB GAN+UR GAN+AE

20 154 142 409 301 516 136 52
50 82 69 408 76 79 41 39

tally. Fig. 2 shows the results of each method at epoch 20.
Again, GAN+AE presents more appealing results.

GAN LSGAN GMMN GAN+MMD GAN+MB GAN+UR GAN+AE

Figure 2. Comparison of different methods on the compositional
MNIST dataset with 1000 modes. The samples are obtained at
epoch 20.

To count the number of missed modes, we employ the
method inspired by (Che et al., 2016), i.e., testing the
optimal discriminator by real data. If the expectation
of discriminator outputs from certain mode is close to 1
(e.g., larger than 0.8), the corresponding input mode is
considered as missed mode. From Table 2, we observe
that GAN+AE converges the fastest. After 50 epochs,
GAN+MB, GAN+UR, and GAN+AE all perform similar.
However, GMMN gains nothing from more training itera-
tions. GAN+MMD eventually outperforms both GAN and
GMMN. In this experiment, GAN+AE shows superior per-
formance in aspects of convergence rate and the capability
in avoiding missing mode.

4.3. Natural Images and Faces

In the experiment, we compare all the methods on natural
images and faces. The results are shown in Fig. 3. Gener-
ally speaking, the methods without AE, i.e., GAN, GMMN,
GAN+MB, and GAN+UR, tend to generate images look-
ing more like mixture from multiple objects, missing the
real models especially when learning natural images. Com-
pared to AE which generates blurry images, GAN+AE pre-
serves more texture and prevents the mixing effect, while
avoiding mode missing. Similarly, GANs without AE
yields distorted faces as compared to GAN+AE.

On the CIFAR-10 dataset, the generated images from
GAN, LSGAN, and GAN+UR look more reasonable.
However, they are not realistic images, rather, they look
like mixtures formed from multiple objects or back-
grounds. Similarly, GMMN cannot compete with other
methods. GAN+MB shows unstable output for this dataset.
GAN+AE shows more noise (or details) as compared to
GAN, LSGAN, and GAN+UR, but it prevents the mixing
issue. We also provide the result of AE, which yields blurry

images but there is no mixing effect. This advantage of
GAN+AE effectively facilitates the generation of more dis-
criminative images. Same effect can be observed from the
results on the face dataset.

GAN LSGAN GMMN GAN+MB GAN+UR GAN+AE AE

Figure 3. Comparison of different methods on CIFAR-10 (top)
and face (bottom) datasets.

4.4. Instability Evaluation

We claim that the variable αL can alleviate the undamped
oscillation problem caused by competition between the
generator and discriminator. In this experiment, we set
α = 0.1 and compare GAN+AE and GAN+AE+αL on
the face dataset. Fig. 4 shows the comparison results. We
clearly observe the oscillation is drastically suppressed by
adding the variable αL. And as a result, the generated im-
ages are more photo-realistic and sharp.

Batch (100 images per batch)
20 40 60 80 100

D
is

cr
im

in
at

or
 lo

ss

0

2

4

6

8

10
GAN+AE

GAN+AE+aL

Batch (100 images per batch)
20 40 60 80 100

j"
3
j

0

0.002

0.004

0.006

0.008

0.01

Figure 4. Left: comparison on discriminator loss (average output
of the discriminator). Middle: absolute gradient from the dis-
criminator. Right: generated images after 10, 50, and 100 batches
from GAN+AE (top) and AE+GAN+αL (bottom) based on a pre-
trained GAN+AE model, which can generate realistic faces.

5. Conclusion
In this paper, we made the initial attempt to theoretically
reasoning the effectiveness of autoencoding-based GANs.
We showed that with the incorporation of an AE, the recon-
struction error serves the purpose of penalizing the missing
modes. Also, we showed that by adding a simple decay
variable in the objective function, the vanishing gradient,
gradient explosion, and the undamped oscillation problems
can be effectively resolved.

GANs Powered by Autoencoding — A Theoretic Reasoning

References
Arjovsky, M. and Bottou, L. Towards principled methods

for training generative adversarial networks. In NIPS
2016 Workshop on Adversarial Training. In review for
ICLR, 2016.

Arjovsky, Martin, Chintala, Soumith, and Bottou, Léon.
Wasserstein GAN. arXiv preprint arXiv:1701.07875,
2017.

Che, T., Li, Y., Jacob, A. P., Bengio, Y., and Li, W.
Mode regularized generative adversarial networks. arXiv
preprint arXiv:1612.02136, 2016.

Donahue, J., Krähenbühl, P., and Darrell, T. Adversar-
ial feature learning. arXiv preprint arXiv:1605.09782,
2016.

Durugkar, I., Gemp, I., and Mahadevan, S. Gen-
erative multi-adversarial networks. arXiv preprint
arXiv:1611.01673, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems (NIPS), pp. 2672–2680,
2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In The International Conference on Learning
Representations (ICLR), 2014.

Lanitis, Andreas, Taylor, Christopher J., and Cootes, Tim-
othy F. Toward automatic simulation of aging effects on
face images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(4):442–455, 2002.

Larsen, A. B. L., Sønderby, S. K., and Winther, O. Au-
toencoding beyond pixels using a learned similarity met-
ric. Proceedings of The 33rd International Conference
on Machine Learning (ICML), 2016.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

Li, Y., Swersky, K., and Zemel, R. Generative moment
matching networks. In International Conference on Ma-
chine Learning (ICML), pp. 1718–1727, 2015.

Liu, Ziwei, Luo, Ping, Wang, Xiaogang, and Tang, Xiaoou.
Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV),
12 2015.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and
Frey, B. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

Mao, Xudong, Li, Qing, Xie, Haoran, Lau, Raymond YK,
and Wang, Zhen. Least squares generative adversarial
networks. arXiv preprint ArXiv:1611.04076, 2016.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. Un-
rolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

Ricanek, Karl and Tesafaye, Tamirat. Morph: A longitu-
dinal image database of normal adult age-progression.
In 7th International Conference on Automatic Face
and Gesture Recognition (FGR06), pp. 341–345. IEEE,
2006.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training GANs. In Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 2226–2234, 2016.

GANs Powered by Autoencoding — A Theoretic Reasoning

Appendix
A. Instability

Besides the mode missing problem, GANs also suffer
from the instability problem. Here, we discuss and tackle
one component of the general instability issue of GANs,
i.e., the unstable update of the generator during training,
namely, vanishing or infinite gradient, and undamped os-
cillation as GANs approach the Nash equilibrium. Fixing
the discriminatorD(x) which is differentiable, the gradient
of generator G(z) with respect to its parameter θ is

∇θLG =∇θEz∼pz [log(1−D(Gθ(z)))]

=Ez∼pz
[

1

D(Gθ(z))− 1

∂D(Gθ(z))

∂Gθ(z)

∂Gθ(z)

∂θ

]
=Ex∼pg

[
∇xD(x)∇θGθ
D(x)− 1

]
,

where ‖Ex∼pg [∇θGθ]‖2 is bounded for a differen-
tiable generator. If D is a perfect discriminator D†,
D†(x)|x∼px = 1 and D†(x)|x∼pg = 0. Note that a per-
fect discriminator is an optimal discriminator, but an opti-
mal discriminator is not necessarily a perfect one. When
D is approaching D† and x ∼ pg , lim

D→D†
D(x) = 0, and

lim
D→D†

∇xD(x) = 0. Therefore,

lim
D→D†

Ex∼pg
[
∇xD(x)∇θGθ
D(x)− 1

]
= 0, (6)

which corresponds to the condition of gradient vanishing,
where the generator is trapped into a bad state without up-
date. On the contrary, if the generator achieves optimum
G∗ given D†, D†(G∗(z)) = 1. Then, lim

G→G∗
D(x) = 1,

and ‖Ex∼pg [∇xD(x)]‖2 > 01. Thus,

lim
G→G∗

Ex∼pg
[
∇xD(x)∇θGθ
D(x)− 1

]
=∞, (7)

which indicates the phenomenon of gradient explosion
when G is approaching the optimum2. In practice, D and
G are updated alternatively based on mini-batch learning.
Therefore, the discriminator is more likely optimal rather
than perfect. For a mini-batch, however, the discrimina-
tor may be locally perfect, then the behavior of instability
would deteriorate the generator. Therefore, starting to train
the generator after training a perfect discriminator causes
gradient explosion, which partly explains why alternative
update of D and G is suggested in (Goodfellow et al.,
2014). Now, assume D = D∗ and G = G∗ after epochs of

1
During training, D(x) is updated under two conditions; either D(x) > 0 for x ∼ pg

orD(x) < 1 for x ∼ px . In either case,∇xD(x) needs to be non-zero to updateD.
2

The objective is to find θ that makes D(Gθ) = 1, but not to optimize Gθ . Therefore,
Gθ doesnt have to be local optimum, i.e.,∇θGθ = 0. In fact, it is extremely rare case thatGθ
is the local optimum.

training, then pg = px and D(x) = 1/2. Under this condi-
tion, we expect∇θLG = 0. However, Ex∼pg [D(x)] = 1/2
and ‖Ex∼pg [∇xD(x)]‖2 > 0. Therefore, ∇θLG 6= 0 that
forces the generator to continuously being updated towards
D(x)|x∼pg = 1. Simultaneously, the discriminator tries
to make D(x)|x∼pg = 0. In this game, Ex∼pg [D(x)] will
present undamped oscillation.

B. Effect of Adding AE and αL

The effect of incorporating AE to GAN is illustrated in
Fig. 5, and Fig. 6 demonstrates the effect of αL.

C. The Training strategy of GAN+AE+αL

We present the training strategy for the proposed
GAN+AE+αL in Algorithm 1. With the auxiliary of AE
(i.e., reconstruction loss), the generator can fit pg to px
without the participation of the discriminator. In addition,
the training of AE is well-known to be relatively stable
compared to that of GANs. Therefore, we first pre-train
AE (i.e., encoder E and generator G) only by the recon-
struction loss. After G is well initialized, the gradient from
the discriminatorD is incorporated. Such two-step training
strategy could effectively enhance the stability of the train-
ing process. On the contrary, updating G by both recon-
struction and adversarial losses from the very beginning,
where the kernel parameters are randomly initialized, may
trap into local optimal, bad equilibrium, or saturation area
because of the activation functions, e.g., sigmoid and tanh.
The training strategy is detailed in Algorithm 1.

D. Network Structure

For fair comparison, we implement each method with the
same architecture of convolution and deconvolution net-
works as given in Table 3 We aim to evaluate the perfor-
mance of different methods. In order to illustrate differ-
ences caused by different methods rather than different se-
tups, we implement each method by the same architecture
and parameter setting as shown in Table. 3. In the training,
the networks are updated through ADAM with the learning
rate 0.0002, and the batch size is 100. The kernel size is
5 × 5. The parameter λ = 100 in all experiments. We set
the prior distribution of z as uniform distribution. An extra
discriminator on z is adopted like in AAE (Makhzani et al.,
2015) to achieve generative modeling. The reconstruction
error is measured by `2-norm. Note that the network is not
delicately designed to achieve the best performance, since
the ultimate goal is to demonstrate the stability by adding
AE to GAN compared to the other improved methods.

Note that the inception score of GAN+AE on the CIFAR-
10 dataset (Table 4) ranks lower than those of GAN,
LSGAN, and GAN+UR. In addition, all standard devi-

GANs Powered by Autoencoding — A Theoretic Reasoning

px

pg

Figure 5. Comparison of GAN (top) and GAN + AE (bottom). From left to right: results after training by 200, 400, 600, 800, and 1000
batches. The real data distribution (blue dotted) is mixed Gaussian with two modes. The red curve shows the distribution of generated
data.

Table 3. Details of convolution and deconvolution networks (a is the spatial dimension of images)
Conv Size Deconv Size
Input (gray/color image) a× a× 1 or 3 Input 50
Conv, ReLU, BN a/2× a/2× 64 FC, ReLU, BN 1024
Conv, ReLU, BN a/4× a/4× 128 FC, ReLU, BN, reshape a/4× a/4× 128
reshape, FC, ReLU, BN 1024 Deconv, ReLU, BN a/2× a/2× 64
FC, Sigmoid 50 or 1 (for D) Deconv, Sigmoid a× a× 1 or 3

Batch (100 images per batch)
0 500 1000 1500 2000 2500 3000 3500

L
(x

;H
(x

))

0

5

10

15

20

25
AE

GAN+AE

GAN+AE+aL

Batch (100 images per batch)
0 500 1000 1500 2000 2500 3000 3500

j"
3
j

#10-3

0

0.5

1

1.5

2

2.5

3

3.5
AE

GAN+AE

GAN+AE+aL

Figure 6. Comparison of AE (αL = 0), GAN+AE (αL = 1), and
GAN+AE+αL (with dynamic αL) on the MNIST dataset. They
start with the same initial parameters. In GAN+AE+αL, αL =
0.1. AE converges slower than GAN+AE, while αL effectively
boosts the convergence. In addition, αL stabilizes the update of
generator (Right).

ation are significantly higher than those on MNIST and
MNIST1000. This may be caused by the inherent design
of inception score whose performance highly depends on
that of the classifier. And we use a pre-trained model on
ImageNet instead of a state-of-the-art model specifically
trained on CIFAR-10.

GANs Powered by Autoencoding — A Theoretic Reasoning

Table 4. Inception scores of each method tested with 10,000 samples on three labeled datasets
Method MNIST MNIST1000 CIFAR10
GAN 2.22± .009 2.18± .017 2.53 ± 2.34
LSGAN 2.26± .008 2.17± .019 1.98± 2.01
GMMN 2.00± .014 2.05± .028 1.48± 1.44
GAN+MMD 2.22± .008 2.13± .023 1.37± 1.19
GAN+MB 2.19± .005 2.04± .049 1.41± 1.26
GAN+UR 2.17± .010 2.07± .024 2.39± 2.16
GAN+AE 2.28 ± .003 2.29 ± .028 1.89± 1.73

Algorithm 1 Training strategy GAN+AE+αL
1: Input: the training dataset Xx, weight of reconstruction loss λ, and decay rate α.
2: Initialize the encoder E, generator G, and discriminator D, which are parameterized by θ, φ, and ϕ, respectively.

3: Stage 1: pre-train E and G
4: repeat
5: unrepeated samples {x1, x2, · · · , xm} ⊂ Xx
6: update the encoder E and generator G by SGD with gradient descent:

∆θ,∆ϕ = ∇θ,ϕ
1

m

m∑
i=1

L(xi −G(E(xi)))

7: update the discriminator D by SGD with gradient ascent:

∆φ = ∇φ
1

m

m∑
i=1

[log(D(xi)(1−D(G(E(xi)))))]

8: until
1

m

m∑
i=1

L(xi, G(E(xi))) <
1

α

9: Stage 2: sharpen the generated data
10: repeat
11: unrepeated samples {x1, x2, · · · , xm} ⊂ Xx

12: αL = min

{
α

m

m∑
i=1

L(xi, G(E(xi))), 1

}
13: update the encoder E and generator G by SGD with gradient descent:

∆θ,∆ϕ = ∇θ,ϕ
λ

m

m∑
i=1

L(xi −G(E(xi)))

14: update the generator G by SGD with gradient descent:

∆θ = ∇θ
1

m

m∑
i=1

[log(1− αLD(G(E(xi))) + λL(xi −G(E(xi)))]

15: update the discriminator D by SGD with gradient ascend:

∆φ = ∇φ
1

m

m∑
i=1

[log(D(xi)(1−D(G(E(xi)))))]

16: until terminating criterion is met

