
Image Super-Resolution by Neural Texture Transfer

Zhifei Zhang
Adobe Research
zzhang@adobe.com

Zhaowen Wang
Adobe Research

zhawang@adobe.com

Zhe Lin
Adobe Research
zlin@adobe.com

Hairong Qi
University of Tennessee

hqi@utk.edu

Abstract

Due to the significant information loss in low-resolution
(LR) images, it has become extremely challenging to further
advance the state-of-the-art of single image super-resolu-
tion (SISR). Reference-based super-resolution (RefSR), on
the other hand, has proven to be promising in recovering
high-resolution (HR) details when a reference (Ref) image
with similar content as that of the LR input is given. How-
ever, the quality of RefSR can degrade severely when Ref
is less similar. This paper aims to unleash the potential of
RefSR by leveraging more texture details from Ref images
with stronger robustness even when irrelevant Ref images
are provided. Inspired by the recent work on image styl-
ization, we formulate the RefSR problem as neural texture
transfer. We design an end-to-end deep model which en-
riches HR details by adaptively transferring the texture from
Ref images according to their textural similarity. Instead of
matching content in the raw pixel space as done by previous
methods, our key contribution is a multi-level matching con-
ducted in the neural space. This matching scheme facilitates
multi-scale neural transfer that allows the model to bene-
fit more from those semantically related Ref patches, and
gracefully degrade to SISR performance on the least rele-
vant Ref inputs. We build a benchmark dataset for the gen-
eral research of RefSR, which contains Ref images paired
with LR inputs with varying levels of similarity. Both quan-
titative and qualitative evaluations demonstrate the superi-
ority of our method over state-of-the-art1.

1. Introduction

The traditional single image super-resolution (SISR)
problem is defined as recovering a high-resolution (HR) im-
age from its low-resolution (LR) observation [38]. As in
other fields of computer vision studies, the introduction of
convolutional neural networks (CNNs) [5, 37, 22, 25, 35,
13] has greatly advanced the state-of-the-art of SISR. How-
ever, due to the ill-posed nature of SISR problems, most

1Code: https://github.com/ZZUTK/SRNTT

existing methods still suffer from blurry results at large up-
scaling factors, e.g., 4×, especially when it comes to the
recovery of fine texture present in the original HR image
but lost in its LR counterpart. In recent years, perceptual-
related constraints, e.g., perception loss [20] and adversarial
loss [11], have been introduced to the SISR problem for-
mulation, leading to major breakthroughs on visual quality
under large upscaling factors [24, 30]. However, they tend
to hallucinate fake textures and even produce artifacts.

This paper diverts from the traditional SISR and explores
the reference-based super-resolution (RefSR). RefSR uti-
lizes rich textures from the HR references (Ref) to com-
pensate for the lost details in the LR images, relaxing the
ill-posed issue and producing more detailed and realistic
textures with the help of reference images. Note that the
Ref images can be obtained from various sources like photo
albums, video frames, web image search, etc. There are ex-
isting RefSR approaches [8, 3, 7, 33, 39, 34, 27, 41] that
adopt internal examples (self-example) or external high-
frequency information to enhance textures. However, these
approaches assume the reference images possess similar
content as that of the LR image and/or with good alignment.
Otherwise, their performance would significantly degrade
and even become worse than SISR methods. In contrast,
the Ref images play a different role in our setting: it does
not require well alignment or similar content to the LR im-
age. Instead, we only intend to transfer the semantically
relevant texture from Ref images to the output SR image.
Ideally, a robust RefSR algorithm should outperform SISR
when good Ref images are given, and achieve comparable
performance as SISR when Ref images are not provided or
do not possess relevant texture at all. Note that content sim-
ilarity would infer texture similarity but not vice versa.

Inspired by the recent work on image stylization [10,
20, 4], we propose a new RefSR algorithm, named Super-
Resolution by Neural Texture Transfer (SRNTT), which
adaptively transfers textures from the Ref images to the SR
image. More specifically, SRNTT conducts local texture
matching in the feature space and transfers matched tex-
tures to the final output through a deep model. The texture
transfer model learns the complicated dependency between
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(a) Two Ref images (b) Bicubic & LR (c) SRGAN [24] (d) CrossNet [41] (L) (e) CrossNet [41] (U) (f) SRNTT (L) (g) SRNTT (U)

Figure 1: SRNTT (ours) is compared to SRGAN [24] (a state-of-the-art SISR method) and CrossNet [41] (a state-of-the-art
RefSR method). (a) Two Ref images. The upper one (U) has similar content to the LR input as shown in (b) bottom-right
corner, and the lower one (L) has distinct or unrelated content to the LR input. (c) Result of SRGAN. (d)(e) Results of
CrossNet using two Ref images respectively. (f)(g) Results of SRNTT using two Ref images respectively.

LR and Ref textures, and leverages similar textures while
suppressing dissimilar textures. The example in Fig. 1 illus-
trates the advantage of the proposed SRNTT compared with
two state-of-the-art works, i.e., SRGAN [24] (for SISR) and
CrossNet [41] (for RefSR). SRNTT shows significant boost
in synthesizing finer texture as compared to the other meth-
ods if using a Ref image with similar content (i.e., Fig. 1(a)
upper). Even using a Ref image with unrelated content (i.e.,
Fig. 1(a) lower), SRNTT is still comparable to SRGAN
(similar visual quality but less artifacts), demonstrating the
adaptiveness/robustness of SRNTT to different Ref images
of various levels of content similarity. By contrast, Cross-
Net would introduce undesired textures from the unrelated
Ref image and shows severe performance degradation

In order to facilitate fair comparison and help advance
research on the RefSR problem in general, we propose a
new dataset, named CUFED5, which provides training and
testing sets accompanied with references of different simi-
larity levels in terms of content, texture, color, illumination,
view point, etc. The main contributions of this paper are:

• We explore a more general RefSR problem, breaking
the performance barrier in SISR (i.e., lack of texture
detail) and relaxing constraints in existing RefSR (i.e.,
alignment assumption).

• We propose an end-to-end deep model, SRNTT, for
the RefSR problem to recover the LR image condi-
tioned on any given references by multi-scale neural
texture transfer. We demonstrate the visual improve-
ment, effectiveness, and adaptiveness of the proposed
SRNTT by extensive empirical studies.

• We build a benchmark dataset, CUFED5, to facili-
tate the further research and performance evaluation of
RefSR methods in handling references with different
levels of similarity to the LR input image.

In the rest of this paper, we review the related works in
Section 2. The network architecture and training criteria are
discussed in Section 3. In Section 4, the proposed dataset

CUFED5 is described in detail. The results of both quanti-
tative and qualitative evaluations are presented in Section 5.
Finally, Section 6 concludes this paper.

2. Related Works

2.1. Deep Learning based SISR

In recent years, deep learning based SISR has shown su-
perior performance in terms of either PSNR or visual qual-
ity compared to non-deep-learning based methods [5, 37,
24]. The reader could refer to [29, 38] for more compre-
hensive review. Here we will only focus on deep learning
based methods.

A milestone work that introduced CNN into SR was pro-
posed by Dong et al. [5], where a three-layer fully convo-
lutional network was trained to minimize the mean squared
error (MSE) between the SR image and the original HR im-
age. It demonstrated the effectiveness of deep learning in
SR and achieved the state-of-the-art performance. Wang et
al. [37] combined the strengths of sparse coding and deep
network and made considerable improvement over previ-
ous models. To speed up the SR process, Dong et al. [6]
and Shi et al. [31] extracted features directly from the LR
image, that also achieved better performance compared to
processing the upscaled LR image through bicubic inter-
polation. In recent years, the state-of-the-art performance
(in PSNR) were all achieved by deep learning based mod-
els [22, 21, 25].

The above mentioned methods, in general, aim at mini-
mizing MSE between the SR and HR images, which might
not always be consistent with the human evaluation (i.e.,
perceptual quality) [24, 30]. Therefore, perceptual-related
constraints were incorporated to achieve better visual qual-
ity. Johnson et al. [20] demonstrated the effectiveness of
adding perception loss using VGG [32]. Ledig et al. [24]
introduced adversarial loss from the generative adversarial
nets (GANs) [11] to minimize the perceptually relevant dis-
tance between the SR and HR images. Sajjadi et al. [30]
further incorporated the texture matching loss based on the



idea of style transfer [9, 10] to enhance the texture in the
SR image. The proposed SRNTT is more closely related to
[24, 30], where perceptual-related constraints (i.e., percep-
tual loss and adversarial loss) are incorporated to recover
more visually plausible SR images.

2.2. Reference-based Super-Resolution

In contrast to SISR where only a single LR image is used
as input, RefSR methods introduce additional images to as-
sist the SR process. In general, the reference images need
to possess similar texture and/or content structure with the
LR image. The references could be selected from adjacent
frames in a video [26, 2], images from web retrieval [39], an
external database (dictionary) [42], or images from different
view points [41]. There is a batch of SR methods that refer
to self patches/neighborhood [8, 3, 7, 16], which are widely
known as self-example based SR. They do not utilize exter-
nal references, thus more close to SISR problems. These
works mostly build the mapping from LR to HR patches
and fuse the HR patches at the pixel level or by a shallow
model, which is insufficient to model the complicated de-
pendency between the LR image and extracted details from
the HR patches. A more generic scenario of utilizing the
references was proposed by Yue et al. [39], which instantly
retrieves similar images from web and conducts global reg-
istration and local matching. However, they made a strong
assumption — the references have to be well aligned to the
LR image. In addition, the shallow model for patch blend-
ing made its performance highly dependent on how well the
references could be aligned. Zheng et al. [41] proposed a
deep model based RefSR method and adopted optical flow
to align input and reference. However, optical flow is lim-
ited in matching long distance correspondences, thus inca-
pable of handling significantly misaligned references. The
proposed SRNTT adopts the ideas of local texture (patch)
matching which could handle long distance dependency.
Like existing RefSR methods, we also “fuse” Ref texture to
the final output, but we conduct it in the multi-scale feature
space through a deep model, which enables the learning of
complicated transfer process from references with scaling,
rotation, or even non-rigid deformations.

3. Approach
The proposed SRNTT aims to estimate the SR image

ISR from its LR counterpart ILR and the given reference
images IRef , synthesizing plausible textures conditioned
on IRef while preserving the consistency with ILR in con-
tent. An overview of the proposed SRNTT is shown in
Fig. 2. The main idea is to search for matching texture
from IRef in the feature space and then transfer matched
textures to ISR in a multi-scale fashion, since the features
are more robust to the variance of color and illumination.
The multi-scale texture transfer simultaneously considers
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Figure 2: The proposed SRNTT framework with feature
swapping and texture transfer.

semantic (higher-level) and textual (lower-level) similarity
between ILR and IRef , leading to transferring related tex-
tures while suppressing irrelevant textures.

In addition to minimizing the pixel and/or perceptual dis-
tance between the output ISR and the original HR image
IHR as most existing SR methods do, we further regularize
on the texture consistency between ISR and the matched
textures from IRef , enforcing the effectiveness of texture
transfer. The final output ISR is synthesized in an end-
to-end manner. Texture searching and transfer will be dis-
cussed in Sections 3.1 and 3.2, respectively. Section 3.3 will
detail the objective function of SRNTT.

3.1. Feature Swapping

We first conduct feature swapping which searches over
the entire IRef for locally similar textures that can be used
to replace (or swap) the texture features of ILR for en-
hanced SR recovery. The feature searching is conducted
in HR spatial coordinate to enable direct texture transfer to
the final output ISR. Following the self-example matching
strategy [7], we first apply bicubic up-sampling on ILR to
get an upscaled LR image ILR↑ that has the same spatial
size as IHR. We also sequentially apply bicubic down-
sampling and up-sampling with the same factor on IRef

to obtain a blurry Ref image IRef↓↑ that matches the fre-
quency band of ILR↑. Instead of estimating a global trans-
formation or optical flow, we match the local patches in
ILR↑ and IRef↓↑ so that there is no constraint on the global
structure of the Ref image, which is a key advantage over
CrossNet [41]. As LR and Ref patches may also differ in
color and illumination, we match their similarity in the neu-



ral feature space φ(I) to emphasize the structural and textu-
ral information. We use inner product to measure the simi-
larity between neural features:

si,j =

〈
Pi(φ(I

LR↑)),
Pj(φ(I

Ref↓↑))

‖Pj(φ(IRef↓↑))‖

〉
, (1)

where Pi(·) denotes sampling the i-th patch from neural
feature map, and si,j is the similarity between the i-th LR
patch and the j-th Ref patch. The Ref patch feature is nor-
malized for selecting the best match over all j. The similar-
ity computation can be efficiently implemented as a set of
convolution (or correlation) operations over all LR patches
with each kernel corresponding to a Ref patch:

Sj = φ(ILR↑) ∗ Pj(φ(I
Ref↓↑))

‖Pj(φ(IRef↓↑))‖
, (2)

where Sj is the similarity map for the j-th Ref patch, and
∗ denotes the correlation operation. We use Sj(x, y) to de-
note the similarity between the LR patch centered at loca-
tion (x, y) and the j-th Ref patch. Both LR and Ref patches
are densely sampled from their images. Based on the sim-
ilarity score, we can construct a swapped feature map M
to represent texture-enhanced LR image. Each patch in M
centered at (x, y) is defined as

Pω(x,y)(M) = Pj∗(φ(I
Ref )), j∗=argmax

j
Sj(x, y), (3)

where ω(·, ·) maps patch center to patch index. Note that
while IRef↓↑ is used for matching (Eq. 2), the raw Ref IRef

is used in swapping (Eq. 3) so that the HR information from
the original references is preserved. Due to the dense sam-
pling of LR patches, we take the average of the swapped
features Pj∗(φ(I

Ref )) in the regions where they overlap.
The resulting swapped feature map M is used as the basis
for the next texture transfer stage.

3.2. Neural Texture Transfer

Our texture transfer model is designed by merging mul-
tiple swapped texture feature maps into a base deep genera-
tive network at different feature layers corresponding to var-
ious scales, as illustrated in Fig. 2 (blue box). For each scale
or neural layer l, a swapped feature map Ml is constructed
using the method introduced above, with a texture feature
encoder φl matching the current scale. The effectiveness of
transferring texture across multiple layers is verified by the
ablation study in Section 5.3.

We use residual blocks and skip connections [14, 15, 24]
to build the base generative network. The network output
ψl at layer l is defined recursively as

ψl = [Res (ψl−1‖Ml−1) + ψl−1] ↑2×, (4)

where Res(·) denotes the residual blocks, ‖ denotes
channel-wise concatenation, and ↑2× denotes 2× upscaling
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Figure 3: The network structure for texture transfer.

with sub-pixel convolution [31]. The final SR result image
is generated after L layers to reach target HR resolution:

ISR = Res (ψL−1‖ML−1) + ψL−1 (5)

Fig. 3 illustrates the network structure of texture transfer
at one scale, where the residual blocks extract related tex-
ture from Ml (i.e., IRef ) conditioned on ψl (i.e., ILR) and
merge it with target content.

Different from traditional SISR methods that only reduce
the difference between ISR and the ground truth IHR, our
proposed SRNTT method further takes into account the tex-
ture difference between ISR and IRef . That is, we require
the texture of ISR to be similar as the swapped feature map
Ml in the feature space of φl. Specifically, we define a tex-
ture loss Ltex as

Ltex=
∑
l

λl
∥∥Gr (φl(ISR) · S∗l

)
−Gr (Ml · S∗l )

∥∥
F
,

(6)
where Gr(·) computes the Gram matrix, and λl is a nor-
malization factor corresponding to the feature size of layer
l. S∗l is a weighting map for all LR patches calculated as the
best matching score in Eq. 3. Intuitively, textures dissimi-
lar to ILR will have lower weight, and thus receiving lower
penalty in texture transfer. In this way, the texture transfer
from IRef to ISR is adaptively enforced based on the Ref
image quality, leading to more robust texture hallucination
as demonstrated in Section 5.3.

3.3. Training Objective

In order to 1) preserve the spatial structure of the LR
image, 2) improve the visual quality of the SR image, and
3) take advantage of the rich texture from Ref images, our
objective function combines reconstruction loss Lrec, per-
ceptual loss Lper, adversarial loss Ladv , and texture loss
Ltex. The reconstruction loss is adopted in most SR meth-
ods. The perceptual and adversarial losses improve visual
quality. The texture loss already discussed in Eq. 6 is spe-
cific to RefSR.

Reconstruction loss aims to achieve higher PSNR, usu-
ally measured in terms of mean square error (MSE). In this
paper, we adopt the `1-norm,

Lrec =
∥∥IHR − ISR

∥∥
1
, (7)



The `1-norm would further sharpen ISR as compared to
MSE. In addition, it is consistent to the objective of WGAN-
GP, which will be discussed later in the adversarial loss.

Perceptual loss has been investigated in recent SR
works [1, 20, 24, 30] for better visual quality. We adopt
the relu5 1 layer of VGG19 [32],

Lper =
1

V

C∑
i=1

∥∥φi(IHR)− φi(ISR)
∥∥
F
, (8)

where V and C indicate the volume and channel number of
the feature maps, respectively, and φi denotes the ith chan-
nel of the feature maps extracted from the hidden layer of
VGG19 model. ‖ · ‖F denotes the Frobenius norm.

Adversarial loss could significantly enhance the sharp-
ness/visual quality of synthesized images [19, 40]. Here,
we adopt WGAN-GP [12], which improves upon WGAN
by penalizing the gradient, achieving more stable results.
Because the Wasserstein distance in WGAN is based on `1-
norm, we use `1-norm as the reconstruction loss (Eq. 7).
Intuitively, consistent objectives would facilitate the opti-
mization process. The adversarial loss is expressed as

Ladv =− Ex̃∼Pg [D(x̃)], (9)
min
G

max
D∈D

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)], (10)

where D is the set of 1-Lipschitz functions, and Pr and Pg

are the model distribution and real distribution, respectively.

3.4. Implementation Details

We adopt a pre-trained VGG19 [32] model for feature
swapping, which is well-known for its power of texture
representation [9, 10]. Feature layers relu1 1, relu2 1,
and relu3 1 are used as texture encoder φl’s in multiple
scales. To speed up the matching process, we only match
on the relu3 1 layer and project the correspondence to lay-
ers relu2 1 and relu1 1, and use the same correspondence
across all layers. The weights for Lrec, Lper, Ladv , and
Ltex are 1, 1e-4, 1e-6, and 1e-4, respectively. Adam opti-
mizer is used with the learning rate of 1e-4. The network is
pre-trained for 2 epochs, where only Lrec is applied. Then,
all losses are involved to train another 20 epochs.

Our method can be easily extended to handle multiple
Ref images. In all our RefSR experiments, we augment
each IRef with its scaled and rotated versions to get more
accurate texture matching results.

4. Dataset
For RefSR problems, the similarity between the LR and

Ref images affects SR results significantly. In general,
references with various levels of similarity to LR images
should be provided for the purpose of both training and

Figure 4: Examples from the CUFED5 testing set. From left
to right are HR image and the corresponding Ref images of
similarity levels L1, L2, L3 and L4, respectively.

evaluating a RefSR algorithm. To the best of our knowl-
edge, there has not been such a dataset available for public
usage. We thus construct such a dataset with Ref images at
various similarity levels based on the CUFED [36] dataset
that contains 1,883 albums capturing diverse events in daily
life. The size of each album varies between 30 and 100 im-
ages. Within each album, we collect image pairs in differ-
ent similarity levels based on SIFT [28] feature matching,
which characterizes local texture pattern that is in line with
the objective of local texture matching.

We define four similarity levels from high to low, i.e., L1,
L2, L3, and L4, according to the number of best matches of
SIFT features. From each paired images, we randomly crop
160×160 patches from one image as the original HR im-
ages, and the corresponding references are cropped from the
other image. In this way, we collect 13,761 paired patches
as the training set. For the testing dataset, each HR image
is paired with all four levels of references in order to ex-
tensively evaluate the adaptiveness of a reference-based SR
method. We use the similar way to collect image pairs as
in building the training dataset. In total, the testing set con-
tains 126 groups of samples. Each group consists of one
HR image and four references at levels L1, L2, L3, and L4,
respectively. Two examples from the testing set are shown
in Fig. 4. We refer to the collected training and testing sets
as CUFED5, which would largely facilitate the research on
RefSR and provide a benchmark for fair comparison.

To evaluate the generalization capacity of the trained
model on CUFED5, we test it on Sun80 [33] and Ur-
ban100 [16]. The Sun80 dataset has 80 natural images, each
of which is accompanied by a series of web-searching refer-
ences, while the Urban100 dataset contains building images
without references.

5. Experimental Results

In this section, both quantitative and qualitative compar-
isons are conducted to demonstrate the advantages of the
proposed SRNTT in terms of visual quality and texture en-
richment. Following standard protocol, we obtain all LR
images by bicubic downscaling (4×) from the HR images.



Table 1: PSNR/SSIM comparison of different SR methods
on three datasets. Methods are grouped by SISR (top) and
RefSR (bottom) with their respective best numbers in bold.

Algorithm CUFED5 Sun80 [33] Urban100 [17]
Bicubic 24.18 / 0.684 27.24 / 0.739 23.14 / 0.674
SRCNN [5] 25.33 / 0.745 28.26 / 0.781 24.41 / 0.738
SelfEx [16] 23.22 / 0.680 27.03 / 0.756 24.67 / 0.749
SCN [37] 25.45 / 0.743 27.93 / 0.786 24.52 / 0.741
DRCN [22] 25.26 / 0.734 27.84 / 0.785 25.14 / 0.760
LapSRN [23] 24.92 / 0.730 27.70 / 0.783 24.26 / 0.735
MDSR [25] 25.93 / 0.777 28.52 / 0.792 25.51 / 0.783
ENet [30] 24.24 / 0.695 26.24 / 0.702 23.63 / 0.711
SRGAN [24] 24.40 / 0.702 26.76 / 0.725 24.07 / 0.729
SRNTT-`2 (SISR) 25.91 / 0.776 28.46 / 0.790 25.50 / 0.783
Landmark [39] 24.91 / 0.718 27.68 / 0.776 —
CrossNet [41] 25.48 / 0.764 28.52 / 0.793 25.11 / 0.764
SRNTT-`2 26.24 / 0.784 28.54 / 0.793 25.50 / 0.783
SRNTT 25.61 / 0.764 27.59 / 0.756 25.09 / 0.774

5.1. Quantitative Evaluation

We compare the proposed SRNTT with the state-of-the-
art SISR and RefSR algorithms2 as shown in Table 1. The
SISR methods in comparison are SRCNN [5], SelfEx [16],
SCN [37], DRCN [22], LapSRN [23], MDSR [25],
ENet [30], and SRGAN [24], among which MDSR [25]
has achieved the state-of-the-art performance in PSNR in
recent two years, while ENet [30] and SRGAN [24] are
considered the state-of-the-art in visual quality. Two RefSR
methods are also included in the comparison, i.e., Land-
mark [39] and the recently proposed CrossNet [41], which
outperforms previous RefSR methods.

For fair comparison, all learning-based methods are
trained on the proposed CUFED5 dataset, and tested on
CUFED5, Sun80 [33], and Urban100 [16], respectively. For
fair comparison on PSNR/SSIM with those methods mainly
minimizing MSE, e.g., SCN and MDSR, we train a simpli-
fied version of SRNTT by only minimizing the MSE, i.e.,
SRNTT-`2. Note that Table 1 shows the results of SRNTT-
`2 in both SISR (upper block) and RefSR (lower block) set-
tings. Specifically, the SRNTT-`2 under SISR setting uses
the LR input as reference. In CUFED5 and Sun80 datasets,
each input corresponds to multiple references, all of which
are used in Landmark, SRNTT-`2 and SRNTT, while Cross-
Net uses the reference that yields the highest PSNR because
CrossNet accepts only one reference.

In Table 1, SRNTT-`2 achieves the highest score on
CUFED5 and Sun80 which have references, while perform-
ing comparably to MDSR (the highest score) on Urban100

2 Implementation of SR algorithms in comparison:
SRCNN: http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
SelfEx: https://sites.google.com/site/jbhuang0604/publications/struct_sr
SCN: http://www.ifp.illinois.edu/˜dingliu2/iccv15/
DRCN: http://cv.snu.ac.kr/research/DRCN/
LapSRN: http://vllab.ucmerced.edu/wlai24/LapSRN/
MDSR: https://github.com/LimBee/NTIRE2017
ENet: https://webdav.tue.mpg.de/pixel/enhancenet/
SRGAN: https://github.com/tensorlayer/srgan
CrossNet: https://github.com/htzheng/ECCV2018_CrossNet_RefSR

which does not have references. Even with SISR setting
on all datasets, SRNTT-`2 (SISR) performs similarly to the
state-of-the-art. The proposed SRNTT, which uses adver-
sarial loss that would increase visual quality but reduce
PSNR, outperforms ENet and SRGAN in PSNR (even com-
parable to those methods that only minimize MSE), while
at the same time achieving higher visual quality (finer tex-
ture and less artifacts) as shown by the examples in Fig. 5.
A more comprehensive evaluation on visual quality will be
conducted in Section 5.2. As demonstrated by the exam-
ples, SRNTT outperforms CrossNet in recovering fine tex-
ture from references. The main reason is that the references
present large disparity/misalignment from the LR image,
which CrossNet is incapable of handling.

Without loss of generality, examples from Sun80 and Ur-
ban100 are displayed in Fig. 5. With the help of references,
SRNTT outperforms other SR methods on Sun80. On Ur-
ban100, however, there is no HR references. We use LR in-
put as the reference and achieve finer texture that could be
transferred from the LR image. In general, SRNTT would
outperform existing SR methods with the assistance of ref-
erences, and we could still achieve state-of-the-art SISR
performance when there is no HR information from refer-
ences. Section 5.3 will further demonstrate the adaptiveness
of SRNTT by analyzing the performance on references of
different similarity levels.

5.2. Qualitative Evaluation by User Study

To evaluate the visual quality of the SR images, we con-
duct user study, where SRNTT is compared to SCN [37],
DRCN [22], MDSR [25], ENet [30], SRGAN [24], Land-
mark [39], and CrossNet [41]. We present the users with
pair-wise comparisons, i.e., SRNTT vs. other, and ask the
users to select the one with higher resolution. For each
reference level, 2,400 votes are collected on the testing
results from the CUFED5 dataset. Fig. 6 shows the vot-
ing results, where the percentages favoring SRNTT denotes
the percentage of users that prefer SRNTT as compared to
the algorithms denoted along the horizontal axis. Overall,
SRNTT significantly outperforms the other algorithms with
over 90% users voting for SRNTT.

5.3. Ablation Studies

5.3.1 Effect of reference similarity

Similarity between LR and Ref images is a key factor
to the success of RefSR methods. This section investi-
gates the performance of CrossNet [41] and the proposed
SRNTT at different reference levels. Table 2 lists the re-
sults at six levels of references, where “HR (warp)” de-
notes the reference obtained by random translation (quarter
to half width/height), rotation (10∼30 degree), and scaling
(1.2×∼2.0× upscaling) from the original HR image. L1,

http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
https://sites.google.com/site/jbhuang0604/publications/struct_sr
http://www.ifp.illinois.edu/~dingliu2/iccv15/
http://cv.snu.ac.kr/research/DRCN/
http://vllab.ucmerced.edu/wlai24/LapSRN/
https://github.com/LimBee/NTIRE2017
https://webdav.tue.mpg.de/pixel/enhancenet/
https://github.com/tensorlayer/srgan
https://github.com/htzheng/ECCV2018_CrossNet_RefSR


Truth MDSR [25] ENet [30] SRNTT-`2 (ours)
Reference CrossNet [41] SRGAN [24] SRNTT (ours)

Figure 5: Visual comparison among different SR methods on CUFED5 (top three examples), Sun80 [33] (the forth and fifth
examples), and Urban100 [16] (the bottom example whose reference image is the LR input).

L2, L3, and L4 are the four levels of references from the
proposed CUFED5 dataset. “LR” means using the LR in-
put image as the references (there is no external references).
As compared to CrossNet, the SRNTT-`2 shows superior
results at each reference level. At the “HR” level, SRNTT-
`2 achieves significant improvement, which demonstrates
the advantage of patch-wise matching over the alignment
using optical flow. Comparing SRNTT and SRNTT-`2,
SRNTT shows even higher PSNR at “HR” level but lower
at other levels. This phenomenon emphasizes the effective-
ness of texture loss in recovering fine textures when given
highly similar references.

To further investigate the gap between the CrossNet
and SRNTT, we conduct an experiment by replacing fea-
ture swapping with optical flow (FlowNet2 [18]) in the
SRNTT framework. As shown in Table 2, “SRNTT-flow”
shows large degradation even at “HR” level as compared to
SRNTT, reflecting the limitation of optical flow in handling
large disparity/misalignment. As the reference similarity
level decreases, PSNR/SSIM of SRNTT reduces gracefully
as well. At “LR” level, SRNTT still achieves comparable
performance as the state-of-the-art SISR algorithms (Ta-
ble 1). We observe that the PSNR of SRNTT-flow is higher
than that of SRNTT at the “LR” level because the Ref is



Table 2: PSNR/SSIM at different reference levels on CUFED5 dataset. PM indicates if patch-based matching is used; GAN
indicates if GAN and other perceptual losses are used.

PM GAN HR (warp) L1 L2 L3 L4 LR
CrossNet [41] 25.49 / .764 25.48 / .764 25.48 / .764 25.47 / .763 25.46 / .763 25.46 / .763
SRNTT-`2 X 29.29 / .889 26.15 / .781 26.04 / .776 25.98 / .775 25.95 / .774 25.91 / .776
SRNTT-flow X 25.82 / .801 24.64 / .743 24.22 / .723 24.15 / .719 24.05 / .714 25.50 / .756
SRNTT X X 33.87 / .959 25.42 / .758 25.32 / .752 25.24 / .751 25.23 / .750 25.10 / .750
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Figure 6: The user study result. SRNTT is compared to
each algorithm along the horizontal axis, and the blue bars
indicate the percentage of users favoring SRNTT results.

identical to the LR input. In this case, optical flow would
easily align Ref to LR, while patch matching may have
missed some matches.

5.3.2 Layers for feature swapping

As discussed in Section 3, feature swapping and transfer at
multiple scales would increase the performance of SRNTT.
Table 3 demonstrates the effectiveness of utilizing multiple
scales as compared to using single scale. The relu1/2/3 de-
notes three layers/scales, i.e., relu1 1, relu2 1, and relu3 1
from VGG19, used in SRNTT for feature swapping. We
observe that the performance in PSNR decreases as reduc-
ing the number of scales. The relu3 gets the lowest PSNR
because relu3 1 is a higher-level layer that carries less high-
frequency information, contributing less to texture transfer
as compared to relu1 1 and relu2 1. For each reference
level, the PSNR follows the similar trend as the number
of scales increases. However, it is interesting that relu3
shows decreasing and then increasing trend as the reference
similarity decreases. This demonstrates the stronger adap-
tiveness of relu3 in preserving spacial structure, i.e., low-
similarity textures from the references are suppressed, and
it tends to focus more on spacial reconstruction instead of
textural recovery. Therefore, the multi-scale texture transfer
using deep model gains extreme momentum on adaptively
learning the complicated transfer process between the con-
tent and external texture.

5.3.3 Effect of texture loss

The weighted texture loss used in the proposed SRNTT is
a key difference from most SR methods. Unlike those

Table 3: PSNR of using different VGG layers for feature
swapping on different reference levels.

Layer relu1 relu2 relu3 relu1/2 relu1/2/3
HR 28.39 28.66 24.83 30.39 33.87
L1 24.76 24.91 24.48 25.05 25.42
L2 24.68 24.86 24.22 25.00 25.32
L3 24.64 24.80 24.39 24.94 25.24
L4 24.63 24.79 24.45 24.92 25.23

style transfer works, where the content image is signifi-
cantly modified to carry the texture from the style image
(i.e., the reference), the proposed SRNTT avoids such “styl-
ization” by local matching, adaptive neural transfer, and
spatial/perceptual regularization. The local matching en-
sures spatially consistent texture, neural transfer gains adap-
tiveness on texture transfer, and spatial/perceptual regular-
ization forces the spacial consistency globally. The effect
of texture loss is shown in Fig. 7. The PSNR tested on
CUFED5 are 25.25 and 25.61 for SRNTT w/o and with the
texture loss, respectively. Without the texture loss, the finer
texture from the references cannot be effectively transferred
into the output.

Figure 7: SR results with texture loss disabled have de-
graded quality compared with the same examples in Fig. 5.

6. Conclusion
This paper exploited the more generic RefSR problem

where the references can be arbitrary images. We pro-
posed SRNTT, an end-to-end network structure that per-
forms multi-level adaptive texture transfer from the refer-
ences to recover more plausible texture in the SR image.
Both quantitative and qualitative experiments were con-
ducted to demonstrate the effectiveness and adaptiveness
of SRNTT. In addition, a new dataset CUFED5 was con-
structed to facilitate the evaluation of RefSR methods. It
also provides a benchmark for future RefSR research.



References
[1] J. Bruna, P. Sprechmann, and Y. LeCun. Super-

resolution with deep convolutional sufficient statistics.
In International Conference on Learning Representa-
tions (ICLR), 2016. 5

[2] J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz,
Z. Wang, and W. Shi. Real-time video super-
resolution with spatio-temporal networks and motion
compensation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2017. 3

[3] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-
resolution through neighbor embedding. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2004. 1, 3

[4] T. Q. Chen and M. Schmidt. Fast patch-based style
transfer of arbitrary style. In Workshop in Constructive
Machine Learning. Advances in Neural Information
Processing Systems, 2016. 1

[5] C. Dong, C. C. Loy, K. He, and X. Tang. Learn-
ing a deep convolutional network for image super-
resolution. In European Conference on Computer Vi-
sion (ECCV), 2014. 1, 2, 6

[6] C. Dong, C. C. Loy, and X. Tang. Accelerating
the super-resolution convolutional neural network. In
European Conference on Computer Vision (ECCV),
2016. 2

[7] G. Freedman and R. Fattal. Image and video upscal-
ing from local self-examples. ACM Transactions on
Graphics, 30(2):12, 2011. 1, 3

[8] W. T. Freeman, T. R. Jones, and E. C. Pasztor.
Example-based super-resolution. IEEE Computer
graphics and Applications, 22(2):56–65, 2002. 1, 3

[9] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthe-
sis using convolutional neural networks. In Advances
in Neural Information Processing Systems, 2015. 3, 5

[10] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style
transfer using convolutional neural networks. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 1, 3, 5

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances in neu-
ral information processing systems, 2014. 1, 2

[12] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. C. Courville. Improved training of Wasserstein
GANs. In Advances in Neural Information Processing
Systems, 2017. 5

[13] W. Han, S. Chang, D. Liu, M. Yu, M. Witbrock, and
T. S. Huang. Image super-resolution via dual-state re-
current networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018. 1

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2016. 4

[15] K. He, X. Zhang, S. Ren, and J. Sun. Identity map-
pings in deep residual networks. In European Confer-
ence on Computer Vision (ECCV), 2016. 4

[16] J.-B. Huang, A. Singh, and N. Ahuja. Single im-
age super-resolution from transformed self-exemplars.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 3, 5, 6, 7

[17] J.-B. Huang, A. Singh, and N. Ahuja. Single im-
age super-resolution from transformed self-exemplars.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 6

[18] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovit-
skiy, and T. Brox. Flownet 2.0: Evolution of optical
flow estimation with deep networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2017. 7

[19] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-
to-image translation with conditional adversarial net-
works. In IEEE conference on computer vision and
pattern recognition, 2017. 5

[20] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses
for real-time style transfer and super-resolution. In
European Conference on Computer Vision (ECCV),
2016. 1, 2, 5

[21] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image
super-resolution using very deep convolutional net-
works. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 2

[22] J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-
recursive convolutional network for image super-
resolution. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016. 1, 2, 6, 11

[23] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang.
Deep Laplacian pyramid networks for fast and accu-
rate super-resolution. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.
6

[24] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cun-
ningham, A. Acosta, A. Aitken, A. Tejani, J. Totz,
Z. Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 1, 2, 3, 4, 5, 6, 7, 11,
12

[25] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. En-
hanced deep residual networks for single image super-
resolution. In The IEEE Conference on Computer



Vision and Pattern Recognition (CVPR) Workshops,
2017. 1, 2, 6, 7, 11, 12

[26] C. Liu and D. Sun. A Bayesian approach to adaptive
video super resolution. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2011.
3

[27] J. Liu, W. Yang, X. Zhang, and Z. Guo. Re-
trieval compensated group structured sparsity for im-
age super-resolution. IEEE Transactions on Multime-
dia, 19(2):302–316, 2017. 1

[28] D. G. Lowe. Object recognition from local scale-
invariant features. In IEEE International Conference
on Computer Vision (ICCV), 1999. 5

[29] K. Nasrollahi and T. B. Moeslund. Super-resolution:
a comprehensive survey. Machine Vision and Appli-
cations, 25(6):1423–1468, 2014. 2

[30] M. S. Sajjadi, B. Scholkopf, and M. Hirsch. En-
hanceNet: Single image super-resolution through au-
tomated texture synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2017. 1, 2, 3, 5, 6, 7, 11, 12

[31] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,
R. Bishop, D. Rueckert, and Z. Wang. Real-time sin-
gle image and video super-resolution using an efficient
sub-pixel convolutional neural network. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016. 2, 4

[32] K. Simonyan and A. Zisserman. Very deep convo-
lutional networks for large-scale image recognition.
In International Conference on Learning Representa-
tions (ICLR), 2015. 2, 5, 11

[33] L. Sun and J. Hays. Super-resolution from internet-
scale scene matching. In IEEE International Confer-
ence on Computational Photography (ICCP), 2012. 1,
5, 6, 7

[34] R. Timofte, V. De, and L. Van Gool. Anchored neigh-
borhood regression for fast example-based super-
resolution. In IEEE International Conference on Com-
puter Vision (ICCV), 2013. 1

[35] X. Wang, K. Yu, C. Dong, and C. Change Loy. Re-
covering realistic texture in image super-resolution by
deep spatial feature transform. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2018. 1

[36] Y. Wang, Z. Lin, X. Shen, R. Mech, G. Miller, and
G. W. Cottrell. Event-specific image importance. In
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 5

[37] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep
networks for image super-resolution with sparse prior.

In IEEE International Conference on Computer Vision
(ICCV), 2015. 1, 2, 6, 11

[38] C.-Y. Yang, C. Ma, and M.-H. Yang. Single-image
super-resolution: A benchmark. In European Confer-
ence on Computer Vision (ECCV), 2014. 1, 2

[39] H. Yue, X. Sun, J. Yang, and F. Wu. Land-
mark image super-resolution by retrieving web im-
ages. IEEE Transactions on Image Processing,
22(12):4865–4878, 2013. 1, 3, 6, 11

[40] Z. Zhang, Y. Song, and H. Qi. Age progres-
sion/regression by conditional adversarial autoen-
coder. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 5

[41] H. Zheng, M. Ji, H. Wang, Y. Liu, and L. Fang. Cross-
Net: An end-to-end reference-based super resolution
network using cross-scale warping. In European Con-
ference on Computer Vision (ECCV), 2018. 1, 2, 3, 6,
7, 8, 11, 12

[42] Y. Zhu, Y. Zhang, and A. L. Yuille. Single image
super-resolution using deformable patches. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2014. 3

[43] Z. Zhu, F. Guo, H. Yu, and C. Chen. Fast single
image super-resolution via self-example learning and
sparse representation. IEEE Transactions on Multime-
dia, 16(8):2178–2190, 2014. 11



Supplementary
This supplementary further details the network structure

of the proposed SRNTT and provides more visual compar-
isons between SRNTT and the other methods cited in the
experimental results of the original paper. In addition, ex-
amples of using references from web search are provided
to further illustrate the generation capacity of SRNTT. Also
included here is the evaluation of SRNTT in terms of run
time and effect of adopting different upscaling method in
the feature swapping stage.

A. Network structure
As discussed in the section of “Approach” in the original

paper, the proposed SRNTT has mainly two components:
1) feature swapping and 2) neural texture transfer. The fea-
ture swapping uses the pre-trained VGG19 model [32]. The
elaboration in this section mainly focuses on the network
structure of the neural texture transfer, as well as the dis-
criminator. Tables A.1 and A.2 list the layer details of the
neural texture transfer and the discriminator.

B. Run Time of SRNTT
The patch matching in the feature swapping is the most

time-consuming part, which could take over 95% of the to-
tal run time. Table B.1 lists the run time of SRNTT and
other related works, where all methods are tested on a
83 × 125 × 3 LR input image with the upscaling factor of
4×. We run on a Quadro P5000 GPU. The “Forward” de-
notes the time of forwarding through the network, “Patch
Matching” indicates the time cost by the patch-matching
process (i.e., obtaining the Ml that is concatenated to the
main flow). For SRNTT, the total run time should be
0.162 + 4.865 = 5.027 seconds, where the patch match-
ing takes about 96% of the total run time. It is well known
that patch matching is time-consuming, and its run time
would increase quadratically with the size of the LR input
and Ref images. Regardless of the patch-matching part, the
run time of SRNTT is still comparable to SISR methods in
the forward time. Note that CrossNet uses MDSR for pre-
upscaling, so the forward time has included the run time of
MDSR.

C. Pre-Upscaling in Feature Swapping
In the feature swapping of the proposed SRNTT (Sec-

tion 3.1 in the original paper), the input LR image ILR

needs to be pre-upscaled to match the scale of ISR. The
upscaling method of obtaining ILR↑, as well as IRef↓↑,
is optional, e.g., bicubic interpolation, MDSR [25], SR-
GAN [24], etc. We experimented with alternative pre-
upscaling methods, i.e., MDSR and SRGAN, and they
dont make big difference. Specifically, we use MDSR

Table A.1: The network structure of neural texture transfer,
and the kernel size is 3×3 except for the last layer, i.e., #63
uses 1× 1 kernel.

# Layer name(s) Output size
0 Input H ×W × 3

1 Conv, ReLU H ×W × 64

2∼17
Residual blocks (Conv,
BN, ReLU, Conv, BN) H ×W × 64

18 Conv, BN H ×W × 64

19 #1 + #18 H ×W × 64

20 Concat: #19 ‖Ml H ×W × 320

21 Conv, ReLU H ×W × 64

22∼37
Residual blocks (Conv,
BN, ReLU, Conv, BN) H ×W × 64

38 Conv, BN H ×W × 64

39 #19 + #38 H ×W × 64

40 Conv, SubPixel, ReLU 2H × 2W × 64

41 Concat: #40 ‖Ml+1 2H × 2W × 192

42 Conv, ReLU 2H × 2W × 64

43∼50
Residual blocks (Conv,
BN, ReLU, Conv, BN) 2H × 2W × 64

51 Conv, BN 2H × 2W × 64

52 #40 + #51 2H × 2W × 64

53 Conv, SubPixel, ReLU 4H × 4W × 64

54 Concat: #53 ‖Ml+2 4H × 4W × 128

55 Conv, ReLU 4H × 4W × 64

56∼59
Residual blocks (Conv,
BN, ReLU, Conv, BN) 4H × 4W × 64

60 Conv, BN 4H × 4W × 64

61 #53 + #60 4H × 4W × 64

62 Conv 4H × 4W × 32

63 Conv, tanh 4H × 4W × 3

and SRGAN in pre-upscaling, and their PSNR/SSIM on
CUFED5 dataset are 25.63/0.765 and 25.61/0.763, respec-
tively. By contrast, using bicubic interpolation for pre-
upscaling would achieve 25.61/0.764.

Therefore, the performance of SRNTT is insensitive to
the variance of pre-upscaling methods although these meth-
ods themselves show large diversity in SR performance, i.e.,
bicubic interpolation gives blurry outputs, MDSR yields
clean SR images, and SRGAN generates sharp results but
with more artifacts.

D. Comparison to Other Algorithms

This section visually compares the methods cited in
the experimental part of the original paper, namely, Lap-
SRN [43], SCN [37], DRCN [22], MDSR [25], ENet [30],
SRGAN [24], Landmark [39], CrossNet [41] and the pro-
posed SRNTT. Figs. D.1–D.5 show examples from the



Table A.2: The network structure of the discriminator, ker-
nel size is 3× 3. The output size is scaled down by stride 2,
and the parameter of LReLU is 0.2. In the training dataset,
the original image size is 160× 160.

# Layer name(s) Output size
0 Input 160× 160× 3

1 Conv, BN, LReLU 160× 160× 32

2 Conv, BN, LReLU 80× 80× 32

3 Conv, BN, LReLU 80× 80× 64

4 Conv, BN, LReLU 40× 40× 64

5 Conv, BN, LReLU 40× 40× 128

6 Conv, BN, LReLU 20× 20× 128

7 Conv, BN, LReLU 20× 20× 256

8 Conv, BN, LReLU 10× 10× 256

9 Conv, BN, LReLU 10× 10× 512

10 Conv, BN, LReLU 5× 5× 512
11 Flatten 12800
12 FC, LReLU 1024
13 FC 1

Table B.1: Run time of different SR algorithms on an LR
input image with the size of 83× 125× 3 (4× upscaling).

Algorithm Forward (sec) Patch Matching (sec)
MDSR [25] 0.684 —
ENet [30] 0.113 —

SRGAN [24] 0.115 —
CrossNet [41] 0.820 —
SRNTT (ours) 0.162 4.865

CUFED5 dataset. We observe that, in general, GAN-based
methods, i.e., ENet, SRGAN, and the proposed SRNTT,
show more clear or less blurry SR results than MSE-based
methods. In addition, compared to all the other methods,
SRNTT presents more rich texture that is transferred from
the reference.

E. References from Web Search

To further demonstrate the generation capacity of the
proposed SRNTT, Figs. E.1–E.3 show examples that are
easy to obtain relevant reference images from web search,
i.e., the famous landmark buildings — the Golden Gate
Bridge and Louvre Museum, and the celebrity — Barack
Obama. SRNTT is compared with the state-of-the-art SISR
and RefSR methods. Specifically, MDSR [25] achieves the
highest PSNR among existing SISR methods. ENet [30]
and SRGAN [24] are comparable in visual quality. Cross-
Net [41] outperforms previous RefSR methods.

As compared to these algorithms, the proposed
SRNTT presents more rich texture that is transferred from

the reference. In addition, SRNTT shows sharper results
but with less artifacts as compared to the GAN-based meth-
ods, i.e., ENet and SRGAN. Meanwhile, SRNTT signifi-
cantly outperforms the MSE-based methods, i.e., MDSR
and CrossNet, in enhancing finer texture and preserving
comparable PSNR.



(a) Original (b) Bicubic (c) Reference

(d) SCN (e) DRCN (f) LapSRN

(g) MDSR (h) ENet (i) SRGAN

(j) Landmark (k) CrossNet (l) SRNTT

Figure D.1: Comparison of different SR algorithms on CUFED5 dataset.



(a) Original (b) Bicubic (c) Reference

(d) SCN (e) DRCN (f) LapSRN

(g) MDSR (h) ENet (i) SRGAN

(j) Landmark (k) CrossNet (l) SRNTT

Figure D.2: Comparison of different SR algorithms on CUFED5 dataset.



(a) Original (b) Bicubic (c) Reference

(d) SCN (e) DRCN (f) LapSRN

(g) MDSR (h) ENet (i) SRGAN

(j) Landmark (k) CrossNet (l) SRNTT

Figure D.3: Comparison of different SR algorithms on CUFED5 dataset.



(a) Original (b) Bicubic (c) Reference

(d) SCN (e) DRCN (f) LapSRN

(g) MDSR (h) ENet (i) SRGAN

(j) Landmark (k) CrossNet (l) SRNTT

Figure D.4: Comparison of different SR algorithms on CUFED5 dataset.



(a) Original (b) Bicubic (c) Reference

(d) SCN (e) DRCN (f) LapSRN

(g) MDSR (h) ENet (i) SRGAN

(j) Landmark (k) CrossNet (l) SRNTT

Figure D.5: Comparison of different SR algorithms on CUFED5 dataset.



(a) Original (b) Reference

(c) Bicubic (d) MDSR

(e) ENet (f) SRGAN

(g) CrossNet (h) SRNTT

Figure E.1: Example of using the reference from web search.



(a) Original (b) Reference

(c) Bicubic (d) MDSR

(e) ENet (f) SRGAN

(g) CrossNet (h) SRNTT

Figure E.2: Example of using the reference from web search.



(a) Original (b) Reference

(c) Bicubic (d) MDSR

(e) ENet (f) SRGAN

(g) CrossNet (h) SRNTT

Figure E.3: Example of using the reference from web search.


